Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Lucy A. Anthenill x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To assess individual and combined associations of high-speed exercise and horseshoe characteristics with risk of forelimb proximal sesamoid bone fractures and proximal sesamoid bone midbody fractures in Thoroughbred racehorses.

Animals—269 deceased Thoroughbred racehorses.

Procedures—A case-control study design was used to compare 121 horses with a fracture of at least 1 of 4 forelimb proximal sesamoid bones (75 horses had a midbody fracture) and 148 horses without a forelimb proximal sesamoid bone fracture. Univariable and multivariable logistic regression analyses were used to evaluate potential risk factors for association with proximal sesamoid bone fracture.

Results—Compared with horses that died without proximal sesamoid bone fractures, horses that died with proximal sesamoid bone fractures were more likely to be sexually intact males, spend more time in active trainingand racing, complete more events, train and race longer since their last layup, have higher exercise intensities during the 12 months prior to death, and have greater cumulative distances for their career. Horses with proximal sesamoid bone midbody fractures were more likely to be sexually intact males, train and race longer since their last layup, and have higher exercise intensities during the 12 months prior to death.

Conclusions and Clinical Relevance—Limitingexercise intensity and the continuous time spent in activity duringa horse's career may decrease the frequency of forelimb proximal sesamoid bone fractures in Thoroughbred horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare macrostructural and microstructural features of proximal sesamoid bones (PSBs) from horses with and without PSB midbody fracture to gain insight into the pathogenesis of PSB fracture.

Sample Population—PSBs from 16 Thoroughbred racehorses (8 with and 8 without a PSB midbody fracture).

Procedures—Parasagittal sections of fractured and contralateral intact PSBs from horses with a PSB fracture and an intact PSB from age- and sex-matched control horses without a PSB fracture were evaluated for visual, radiographic, microradiographic, histologic, and his-tomorphometric differences in bone porosity, vascular channels, heme pigment, trabecular anisotropy, and pathological findings.

Results—Fractured PSBs and their contralateral intact PSBs had more compacted trabecular bone than did control PSBs. Focal repair or remodeling was evident in the palmar aspect of many fractured and contralateral intact PSBs. Fracture coincided with microstructural features and propagated from the flexor to the articular surface.

Conclusions and Clinical Relevance—Fractured PSBs had adapted to high loading but had focal evidence of excessive remodeling and porosity that likely predisposed the horses to complete fracture and catastrophic injury. Detection of focal injury before complete fracture provides an opportunity for prevention of catastrophic injury. Development of diagnostic imaging methods to assess porosity of PSBs may help to identify at-risk horses and allow for modifications of training and racing schedules to reduce the incidence of PSB fracture in Thoroughbred racehorses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the distribution for limbs and bones in horses with fractures of the proximal sesamoid bones and relationships with findings on palmarodorsal radiographic images.

Sample Population—Proximal sesamoid bones obtained from both forelimbs of cadavers of 328 racing Thoroughbreds.

Procedure—Osteophytes; large vascular channels; and fracture location, orientation, configuration, and margin distinctness were categorized by use of high-detail contact palmarodorsal radiographs. Distributions of findings were determined. Relationships between radiographic findings and fracture characteristics were examined by use of χ2 and logistic regression techniques.

Results—Fractures were detected in 136 (41.5%) horses. Biaxial fractures were evident in 109 (80%) horses with a fracture. Osteophytes and large vascular channels were evident in 266 (81%) and 325 (99%) horses, respectively. Medial bones typically had complete transverse or split transverse simple fractures, indistinct fracture margins, > 1 vascular channel that was > 1 mm in width, and osteophytes in abaxial wing and basilar middle or basilar abaxial locations. Lateral bones typically had an oblique fracture and distinct fracture margins. Odds of proximal sesamoid bone fracture were approximately 2 to 5 times higher in bones without radiographic evidence of osteophytes or large vascular channels, respectively.

Conclusions and Clinical Relevance—Biaxial fractures of proximal sesamoid bones were common in cadavers of racing Thoroughbreds. Differences between medial and lateral bones for characteristics associated with fracture may relate to differences in fracture pathogeneses for these bones. Osteophytes and vascular channels were common findings; however, fractures were less likely to occur in bones with these features.

Full access
in American Journal of Veterinary Research