Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Luc Van Ham x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the usefulness of magnetic motor-evoked potentials (MMEPs) for assessing the integrity of the cervical, thoracic, and thoracolumbar spinal cord in horses with bilateral hind limb ataxia.

Animals—9 horses and 1 donkey with bilateral hind limb ataxia of various degrees.

Procedure—The motor cortex was stimulated magnetically, and MMEPs were recorded bilaterally from the extensor carpi radialis and cranial tibial muscles.

Results—In 5 horses and 1 donkey, MMEPs with normal onset latencies and peak-to-peak amplitude were recorded from the extensor carpi radialis muscles, whereas abnormal onset latencies and peak-topeak amplitudes were recorded from the cranial tibial muscles. In these animals, a spinal cord lesion in the thoracic or thoracolumbar segments was suspected. In 4 horses, onset latencies and peak-topeak amplitude of MMEPs recorded from the extensor carpi radialis and cranial tibial muscles were abnormal. In these horses, a cervical spinal cord lesion was suspected.

Conclusions and Clinical Relevance—Transcranial magnetic stimulation can be considered a valuable diagnostic tool for assessing the integrity of the spinal cord, and MMEPs may be used for differentiating thoracic or thoracolumbar spinal cord lesions from mild cervical spinal cord lesions that cause ataxia in the hind limbs only. (Am J Vet Res 2003;64:1382–1386)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine radiographic vertebral ratio values representing vertebral canal stenosis in Doberman Pinschers with and without clinical signs of caudal cervical spondylomyelopathy (CCSM).

Animals—Doberman Pinschers with (n = 81) and without (39) signs of CCSM.

Procedures—All dogs underwent lateral survey radiography of the cervical vertebral column. Five specific measurements were made at C3 through C7, and from those data, 3 ratios were calculated and analyzed for use in diagnosis of CSSM: canal height-to-vertebral body height ratio (CBHR), canal height-to-vertebral body length ratio (CBLR), and caudal vertebral canal height-to-cranial vertebral canal height ratio (CCHR). The CBHR and CBLR were considered indicators of vertebral canal stenosis, and CCHR described vertebral canal shape.

Results—Compared with Doberman Pinschers without CCSM, mean CBHR and CBLR values were significantly smaller for Doberman Pinschers with CCSM; for CBHR, this difference was evident at each assessed vertebra. The CCHR value for C7 was significantly larger in dogs with CCSM. Receiver operating characteristic statistics did not identify a threshold point that had combined high sensitivity and specificity sufficient to differentiate between Doberman Pinschers with and without CCSM.

Conclusions and Clinical Relevance—Doberman Pinschers with CCSM had vertebral canal stenosis combined with a funnel-shaped vertebral canal at C7 significantly more often than did Doberman Pinschers without CCSM. Despite these significant differences, no reliable threshold ratio values were identified to differentiate groups of dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine murmur prevalence by auscultation of 105 apparently healthy Whippets without signs of cardiac disease, to determine the origin of these murmurs, and to evaluate the influence of sex, type of pedigree (ie, bred for showing or racing), and training on these murmurs.

Design—Cross-sectional study.

Animals—105 client-owned Whippets.

Procedures—All dogs were auscultated by the first author and underwent a complete physical and cardiological examination, together with a hematologic assessment. Several RBC variables and echocardiographic variables were compared between dogs with or without a murmur at the level of the aortic valve.

Results—44 of 105 (41.9%) dogs had no murmur. A soft systolic murmur was present with point of maximal intensity at the level of the aortic valve in 50 (47.6%) dogs, at the level of the pulmonic valve in 8 (7.6%) dogs, and at the level of the mitral valve in 3 (2.9%) dogs. No significant differences were found in heart rate, rhythm, murmur presence, point of maximal intensity, and murmur grade between males and females, between dogs with race- and show-type pedigrees, or between dogs in training and not in training. Dogs with a murmur at the level of the aortic valve had a significantly higher aortic and pulmonic blood flow velocity and cardiac output, compared with dogs without a murmur.

Conclusions and Clinical Relevance—Whippets have a high prevalence of soft systolic murmurs in the absence of any structural abnormalities, which fit the description of innocent murmurs. No influence of sex, pedigree type, or training was found on the occurrence of these murmurs in Whippets.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To investigate the physiologic endocrine effects of food intake and food withholding via measurement of the circulating concentrations of acylated ghrelin, growth hormone (GH), insulin–like growth factor-I (IGF-I), glucose, and insulin when food was administered at the usual time, after 1 day's withholding, after 3 days' withholding and after refeeding the next day in healthy Beagles.

Animals—9 healthy Beagles.

Procedures—Blood samples were collected from 8:30 AM to 5 PM from Beagles when food was administered as usual at 10 AM, after 1 day's withholding, after 3 days' withholding, and after refeeding at 10 AM the next day.

Results—Overall mean plasma ghrelin concentrations were significantly lower when food was administered than after food withholding. Overall mean plasma GH and IGF-I concentrations did not differ significantly among the 4 periods. Circulating overall mean glucose and insulin concentrations were significantly higher after refeeding, compared with the 3 other periods.

Conclusions and Clinical Relevance—In dogs, food withholding and food intake were associated with higher and lower circulating ghrelin concentrations, respectively, suggesting that, in dogs, ghrelin participates in the control of feeding behavior and energy homeostasis. Changes in plasma ghrelin concentrations were not associated with similar changes in plasma GH concentrations, whereas insulin and glucose concentrations appeared to change reciprocally with the ghrelin concentrations.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the spectrum and frequency of abnormalities for low-field magnetic resonance imaging (MRI) examinations of clinically normal Doberman Pinschers and Foxhounds.

Animals—37 clinically normal dogs (20 Doberman Pinschers and 17 Foxhounds).

Procedures—For each dog, MRI of the cervical vertebrae (sagittal, dorsal, and transverse T1- and T2-weighted images) was performed. Variables assessed were intervertebral disk degeneration, disk-associated compression, compression of the dorsal portion of the spinal cord, vertebral body abnormalities, and changes in intraparenchymal signal intensity. Associations between these variables and age, breed, sex, and location of the assessed intervertebral disk spaces were evaluated.

Results—Severe MRI abnormalities were detected in 17 dogs, including complete disk degeneration (n = 4 dogs), spinal cord compression (3), or both (10). Vertebral body abnormalities were detected in 8 dogs, and hyperintense signal intensity was detected in 2 dogs. Severity of disk degeneration and disk-associated compression was significantly associated with increased age. There was a significant association between disk degeneration, disk-as-sociated compression, and compression of the dorsal aspect of the spinal cord and location of the assessed intervertebral disk space, with the intervertebral disk spaces in the caudal portion of the cervical region being more severely affected.

Conclusions and Clinical Relevance—Abnormalities were commonly seen on MRI examinations of the caudal portion of the cervical vertebral column and spinal cord of clinically normal Doberman Pinchers and Foxhounds. Such lesions were probably part of the typical spinal cord degeneration associated with the aging process of dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess the agreement between CT and MRI for enabling detection of intracranial lesions in cats and dogs.

Design—Evaluation study.

Animals—51 dogs and 7 cats with suspected intracranial lesions.

Procedures—During a 2-year-period, dogs and cats with suspected intracranial pathological changes underwent MRI and CT (single slice) of the head. Radiologists evaluated images produced with both techniques without awareness of subject identity. Agreement between methods was assessed for allowing detection of solitary or multiple lesions, selected lesion characteristics (via the Cohen κ statistic), and lesion dimensions (via Bland-Altman plots).

Results—CT and MRI had substantial agreement for allowing detection of lesions and identification of whether the lesions were solitary or multiple. The techniques agreed almost perfectly for allowing identification of a mass effect and contrast medium enhancement, which were considered principal diagnostic imaging signs. A lower degree of agreement was attained for allowing identification of enhancement patterns and aspects of lesion margins. Agreement was substantial to almost perfect for lesion visualization in most anatomic brain regions but poor for identification of lesion dimensions.

Conclusions and Clinical Relevance—Degrees of agreement between CT and MRI for allowing the detection and characterization of intracranial lesions ranged from poor to almost perfect, depending on the variable assessed. More investigation is needed into the relative analytic sensitivity and possible complementarities of CT and MRI in the detection of suspected intracranial lesions in dogs and cats.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate the evolution of clinical signs and their correlation with results of magnetic resonance imaging (MRI) and transcranial magnetic stimulation (TMS) and to assess potential prognostic variables after conservative medical treatment for disk-associated cervical spondylomyelopathy (DA-CSM) in dogs.

Design—Prospective cohort study.

Animals—21 client-owned dogs with DA-CSM.

Procedures—After neurologic grading, dogs underwent low-field MRI and TMS with measurement of onset latencies and peak-to-peak amplitudes from the extensor carpi radialis and cranial tibial muscles. Dimensions calculated from MRI images were remaining spinal cord area, spinal cord compression ratio, vertebral occupying ratio, vertebral canal height-to-body height ratio, vertebral canal height-to-body length ratio, and vertebral canal compromise ratio. Intraparenchymal signal intensity changes were graded. Dogs were reevaluated 1, 3, 6, 12, and 24 months after initial diagnosis.

Results—Outcome was successful in 8 of 21 dogs. Negative outcomes were characterized by rapid progression of clinical signs. All dogs with more severe clinical signs of DA-CSM 1 month after diagnosis had unsuccessful outcomes. Outcome was associated with the remaining spinal cord area and vertebral canal compromise ratio. Prognosis was not associated with severity of clinical signs or results of TMS. There were no significant correlations among clinical signs, MRI findings, and TMS results.

Conclusions and Clinical Relevance—Conservative medical treatment of DA-CSM was associated with a guarded prognosis. Selected MRI variables and clinical evolution 1 month after diagnosis can be considered prognostic indicators. The lack of correlation among clinical signs, results of diagnostic imaging, and results of electrophysiologic evaluation in dogs with DA-CSM warrants further investigation.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate the use of transcranial magnetic stimulation for differentiating between clinically relevant and clinically irrelevant cervical spinal cord compression on magnetic resonance imaging (MRI).

Design—Validation study.

Animals—Clinically normal Doberman Pinschers without (n = 11) and with (6) spinal cord compression on MRI and 16 Doberman Pinschers with disk-associated wobbler syndrome (DAWS).

Procedures—After dogs were sedated, transcranial magnetic motor evoked potentials were recorded from the extensor carpi radialis muscle (ECRM) and cranial tibial muscle (CTM). Onset latencies and peak-to-peak amplitudes were measured. Magnetic resonance imaging was performed to identify spinal cord compression.

Results—There were significant differences in ECRM and CTM onset latencies between Doberman Pinschers with DAWS and each of the 2 groups of clinically normal dogs, but there were no significant differences in ECRM and CTM onset latencies between the 2 groups of clinically normal dogs. There were significant differences in CTM peak-to-peak amplitudes between Doberman Pinschers with DAWS and each of the 2 groups of clinically normal dogs, but there were no significant differences in ECRM peak-to-peak amplitudes among groups or in CTM peak-to-peak amplitudes between the 2 groups of clinically normal dogs. There was a significant correlation between severity of spinal cord compression and ECRM onset latency, CTM onset latency, and CTM peak-to-peak amplitude.

Conclusions and Clinical Relevance—Results suggested that transcranial magnetic stimulation may be a useful diagnostic tool to differentiate between clinically relevant and clinically irrelevant spinal cord compression identified on MRI alone.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine interobserver and intraobserver agreement for results of low-field magnetic resonance imaging (MRI) in dogs with and without disk-associated wobbler syndrome (DAWS).

Design—Validation study.

Animals—21 dogs with and 23 dogs without clinical signs of DAWS.

Procedures—For each dog, MRI of the cervical vertebral column was performed. The MRI studies were presented in a randomized sequence to 4 board-certified radiologists blinded to clinical status. Observers assessed degree of disk degeneration, disk-associated and dorsal compression, alterations in intraspinal signal intensity (ISI), vertebral body abnormalities, and new bone formation and categorized each study as originating from a clinically affected or clinically normal dog. Interobserver agreement was calculated for 44 initial measurements for each observer. Intraobserver agreement was calculated for 11 replicate measurements for each observer.

Results—There was good interobserver agreement for ratings of disk degeneration and vertebral body abnormalities and moderate interobserver agreement for ratings of disk-associated compression, dorsal compression, alterations in ISI, new bone formation, and suspected clinical status. There was very good intraobserver agreement for ratings of disk degeneration, disk-associated compression, alterations in ISI, vertebral body abnormalities, and suspected clinical status. There was good intraobserver agreement for ratings of dorsal compression and new bone formation. Two of 21 clinically affected dogs were erroneously categorized as clinically normal, and 4 of 23 clinically normal dogs were erroneously categorized as clinically affected.

Conclusions and Clinical Relevance—Results suggested that variability exists among observers with regard to results of MRI in dogs with DAWS and that MRI could lead to false-positive and false-negative assessments.

Full access
in Journal of the American Veterinary Medical Association