Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Lori M. Hansen x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine molecular characteristics, antimicrobial susceptibility, and toxigenicity of Clostridium difficile isolates from horses in an intensive care unit and evaluate associations among severity of clinical disease with specific strains of C difficile.

Design—Prospective study.

Animals—130 horses.

Procedures—Feces were collected from horses admitted for acute gastrointestinal tract disease with loose feces and submitted for microbial culture and immunoassay for toxin production. Polymerase chain reaction assays were performed on isolates for toxins A and B genes and strain identification.

Results—Isolates were grouped into 3 strains (A, B, and C) on the basis of molecular banding patterns. Toxins A and B gene sequences were detected in 93%, 95%, and 73% of isolates of strains A, B, and C, respectively. Results of fecal immunoassays for toxin A were positive in 40%, 63%, and 16% of horses with strains A, B, and C, respectively. Isolates in strain B were resistant to metronidazole. Horses infected with strain B were 10 times as likely to have been treated with metronidazole prior to the onset of diarrhea as horses infected with other strains. Duration from onset of diarrhea to discharge (among survivors) was longer, systemic inflammatory response syndromes were more pronounced, and mortality rate was higher in horses infected with strain B than those infected with strains A and C combined.

Conclusions and Clinical Relevance—Horses may be infected with a number of heterogeneous isolates of C difficile. Results indicated that toxigenicity and antimicrobial susceptibility of isolates vary and that metronidazole-resistant strains may be associated with severe disease.

Restricted access
in Journal of the American Veterinary Medical Association


Objective—To determine molecular characteristics of Clostridium difficile isolates from foals with diarrhea and identify clinical abnormalities in affected foals.

Design—Retrospective study.

Animals—28 foals with C difficile-associated diarrhea.

Procedure—Toxigenicity, molecular fingerprinting, and antibiotic susceptibility patterns were determined. Information on signalment, clinical findings, results of clinicopathologic testing, whether antimicrobials had been administered prior to development of diarrhea, and outcome was obtained from the medical records.

Results—Twenty-three (82%) foals survived. Toxin A and B gene sequences were detected in isolates from 24 of 27 foals, whereas the toxin B gene alone was detected in the isolate from 1 foal. Results of an ELISA for toxin A were positive for fecal samples from only 8 of 20 (40%) foals. Ten of 23 (43%) isolates were resistant to metronidazole. Molecular fingerprinting revealed marked heterogeneity among isolates, except for the metronidazole-resistant isolates. Sixteen foals had tachypnea. Hematologic abnormalities were indicative of inflammation. Common serum biochemical abnormalities included metabolic acidosis, hyponatremia, hypocalcemia, azotemia, hypoproteinemia, hyperglycemia, and high enzyme activities. Passive transfer of maternal antibodies was adequate in all 12 foals evaluated.

Conclusions and Clinical Relevance—Results suggest that a large percentage of C difficile isolates from foals with diarrhea will have the toxin A and B gene sequences. Because of the possibility that isolates will be resistant to metronidazole, susceptibility testing is warranted. Clostridium difficile isolates from foals may have a substantial amount of molecular heterogeneity. Clinical and hematologic findings in affected foals are similar to those for foals with diarrhea caused by other pathogens. (J Am Vet Med Assoc 2002;220:67–73)

Restricted access
in Journal of the American Veterinary Medical Association