Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Lori J. Best x
  • Refine by Access: All Content x
Clear All Modify Search


OBJECTIVE To evaluate the tear film osmolality and electrolyte composition in healthy horses.

ANIMALS 15 healthy adult horses.

PROCEDURES Each horse was manually restrained, and an ophthalmic examination, which included slit-lamp biomicroscopy, indirect ophthalmoscopy, and a Schirmer tear test, was performed. Tear samples were collected from both eyes with microcapillary tubes 3 times at 5-minute intervals. The tear samples for each horse were pooled, and the osmolality and electrolyte concentrations were measured. The mean (SD) was calculated for each variable to establish preliminary guidelines for tear film osmolality and electrolyte composition in healthy horses.

RESULTS The mean (SD) tear film osmolality was 283.51 (9.33) mmol/kg, and the mean (SD) sodium, potassium, magnesium, and calcium concentrations were 134.75 (10), 16.3 (5.77), 3.48 (1.97), and 1.06 (0.42) mmol/L, respectively. The sodium concentration in the tear film was similar to that in serum, whereas the potassium concentration in the tear film was approximately 4.75 times that of serum.

CONCLUSIONS AND CLINICAL RELEVANCE Results provided preliminary guidelines with which tear samples obtained from horses with keratopathies can be compared. Measurement of tear film osmolality in these horses was easy and noninvasive. The tear film concentration of divalent cations was greater than expected and was higher than the divalent cation concentrations in the tear films of rabbits and humans. These data may be clinically useful for the diagnosis and monitoring of hyperosmolar ocular surface disease in horses.

Full access
in American Journal of Veterinary Research


OBJECTIVE To describe qualitative blinking patterns and determine quantitative kinematic variables of eyelid motion in ophthalmologically normal horses.

ANIMALS 10 adult mares.

PROCEDURES High-resolution videography was used to film blinking behavior. Videotapes were analyzed for mean blink rate, number of complete versus incomplete blinks, number of unilateral versus bilateral blinks, and subjective descriptions of blinking patterns. One complete blink for each horse was analyzed with image-analysis software to determine the area of corneal coverage as a function of time during the blink and to calculate eyelid velocity and acceleration during the blink.

RESULTS Mean ± SD blink rate was 18.9 ± 5.5 blinks/min. Blinks were categorized as minimal incomplete (29.7 ± 15.6%), moderate incomplete (33.5 ± 5.9%), complete (30.8 ± 13.1%), and complete squeeze (6.0 ± 2.8%); 22.6 ± 9.0% of the blinks were unilateral, and 77.3 ± 9.1% were bilateral. Mean area of exposed cornea at blink initiation was 5.89 ± 1.02 cm2. Mean blink duration was 0.478 seconds. Eyelid closure was approximately twice as rapid as eyelid opening (0.162 and 0.316 seconds, respectively). Deduced maximum velocity of eyelid closure and opening was −16.5 and 7.40 cm/s, respectively. Deduced maximum acceleration of eyelid closure and opening was −406.0 and −49.7 cm/s2, respectively.

CONCLUSIONS AND CLINICAL RELEVANCE Kinematic variables of ophthalmologically normal horses were similar to values reported for humans. Horses had a greater percentage of complete squeeze blinks, which could increase tear film stability. Blinking kinematics can be assessed as potential causes of idiopathic keratopathies in horses.

Full access
in American Journal of Veterinary Research