Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Londa J. Berghaus x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate effects of black walnut extract (BWE) on equine mononuclear cells and determine whether BWE has direct proinflammatory effects.

Sample—Mononuclear cells separated from blood samples from 8 horses.

Procedures—Aqueous BWE was prepared and processed to eliminate contamination with particulates and microbes. A Limulus amoebocyte lysate assay was used to detect lipopolysaccharide (LPS) contamination in the BWE. Mononuclear cells were incubated in minimal essential medium with or without the addition of 0.6% to 10% (vol/vol) BWE. These mononuclear cells were assessed for viability, activities of caspases 3 and 7, nitric oxide production, procoagulant activity, and tumor necrosis factor-α production. The effect of LPS on cellular responses induced by BWE was assessed by coincubation with 13 U of polymyxin B/mL; mononuclear cells incubated with LPS were used as a reference.

Results—BWE did not cause loss of cell membrane integrity in mononuclear cells but did induce a dose-dependent increase in activities of caspases 3 and 7. Neither BWE nor LPS significantly induced production of nitric oxide. Both BWE and LPS induced comparable amounts of procoagulant activity and tumor necrosis factor-α production; coincubation with polymyxin B reduced the activity for BWE and LPS by 50% and approximately 100%, respectively.

Conclusions and Clinical Relevance—Addition of BWE induced inflammatory activation of equine mononuclear cells, a portion of which was independent of the effects of LPS. Furthermore, BWE and LPS may work in concert to induce systemic inflammatory responses that contribute to the development of acute laminitis in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate changes in cysteinyl leukotriene (LT) concentrations in urine and bronchoalveolar lavage fluid (BALF) in cats with experimentally induced asthma.

Animals—19 cats with experimentally induced asthma and 5 control cats.

Procedure—Cats were sensitized to Bermuda grass or house dust mite allergen, and phenotypic features of asthma were confirmed with intradermal skin testing, evaluation of BALF eosinophil percentages, and pulmonary function testing. A competitive ELISA kit for LTC4, LTD4, and LTE4 was used for quantitative analysis of LTs. Urinary creatinine concentrations and BALF total protein (TP) concentrations were measured, and urinary LT-to-creatinine ratios and BALF LTto- TP ratios were calculated.

Results—Mean urinary LT-to-creatinine ratios did not differ significantly between control cats and allergensensitized cats before or after sensitization and challenge exposure with saline (0.9% NaCl) solution or allergen, respectively. In BALF, the mean LT-to-TP ratio of control cats did not differ significantly before or after sensitization and challenge exposure with saline. Asthmatic cats had BALF LT-to-TP ratios that were significantly lower than control cats at all time points, whereas ratios for asthmatic cats did not differ significantly among the various time points.

Conclusions and Clinical Relevance—Although LTs were readily detectable in urine, no significant increases in urinary LT concentrations were detected after challenge in allergen-sensitized cats. Spot testing of urinary LT concentrations appears to have no clinical benefit for use in monitoring the inflammatory asthmatic state in cats. The possibility that cysteinyl LTs bind effectively to their target receptors in BALF and, thus, decrease free LT concentrations deserves further study. (Am J Vet Res 2003;64:1449–1453)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess IgE response and cytokine gene expressions in pulmonary lymph collected from bovine respiratory syncytial virus (BRSV)-infected calves after ovalbumin inhalation.

Animals—Thirteen 7- to 8-week-old calves.

Procedures—The efferent lymphatic duct of the caudal mediastinal lymph node of each calf was cannulated 3 or 4 days before experiment commencement. Calves were inoculated (day 0) with BRSV (n = 7) or BRSV-free tissue culture medium (mock exposure; 6) via aerosolization and exposed to aerosolized ovalbumin on days 1 through 6 and day 15. An efferent lymph sample was collected daily from each calf on days −1 through 16; CD4+ and CD8+ T lymphocyte subsets in lymph samples were enumerated with a fluorescence-activated cell scanner. Expressions of several cytokines by efferent lymphocytes and lymph ovalbumin-specific IgE concentration were measured. Each calf was euthanized on day 16 and then necropsied for evaluation of lungs.

Results—Mean fold increase in ovalbumin-specific IgE concentration was greater in BRSV-infected calves than in mock-infected calves. At various time points from days 4 through 10, percentages of T lymphocyte subsets and CD4+:CD8+ T lymphocyte ratios differed between BRSV-infected calves and day −1 values or from values in mock-infected calves. On days 3 through 5, IL-4 and IL-13 gene expressions in BRSV-infected calves were increased, compared with expressions in mock-infected calves. Lung lesions were consistent with antigen exposure.

Conclusions and Clinical Relevance—In response to the inhalation of aerosolized ovalbumin, BRSV infection in calves appeared to facilitate induction of a T helper 2 cell response and ovalbumin-specific IgE production.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess the in vitro capability of aqueous black walnut extracts (BWEs) to generate reactive oxygen species in water-based media ranging in makeup from a simple buffer solution to a complex solution containing serum.

Sample—3 BWEs.

Procedures—Production of reactive oxygen species by BWEs prepared in water or N-hexane was tested in PBS solution, PBS solution containing 0.5% bovine serum albumin and 5mM glucose (PBG), and RPMI-1640 medium (RPMI) containing 10% fetal bovine serum or 10% donor horse serum. Reactive oxygen species production was measured as conversion of nonfluorescent dihydrorhodamine 123 by reactive oxygen species to its fluorescent product, rhodamine-123. Hydrogen peroxide was used as a standard for reactive oxygen species activity.

Results—BWEs prepared in water generated reactive oxygen species in a dose-dependent manner over a 4-hour period, with peak activity detected when the BWEs were added as 10% (vol/vol) of the RPMI. The BWE prepared in N-hexane generated maximal reactive oxygen species activity after incubation for 3 to 4 hours when added at concentrations ranging from 0.3% to 0.5% (vol/vol) of the RPMI. The BWE prepared in water generated the highest fluorescent signal in PBS solution, whereas the BWE prepared in N-hexane generated the highest fluorescent signal in PBG.

Conclusions and Clinical Relevance—The BWEs prepared in water generated a dose-dependent induction of fluorescence in all the water-based solutions tested. These findings indicated that the BWEs, which are used to induce laminitis in horses, generate reactive oxygen species.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare immune responses following modified-live virus (MLV) vaccination at weaning after intranasal or SC administration of an MLV vaccine to beef calves at 2 or 70 days of age.

Animals—184 calves.

Procedures—Calves were allocated to 1 of 5 groups. The IN2 (n = 37) and IN70 (37) groups received an MLV vaccine containing bovine herpesvirus 1 (BHV1), bovine viral diarrhea virus (BVDV) types 1 and 2, bovine respiratory syncytial virus (BRSV), and parainfluenza 3 virus intranasally and a Mannheimia haemolytica and Pasteurella multocida bacterin SC at median ages of 2 and 70 days, respectively. The SC2 (n = 36) and SC70 (37) groups received a 7-way MLV vaccine containing BHV1, BVDV1, BVDV2, BRSV, parainfluenza 3 virus, M haemolytica, and P multocida SC at median ages of 2 and 70 days, respectively; the control group (37) remained unvaccinated until weaning. All calves received the 7-way MLV vaccine SC at median ages of 217 (weaning) and 231 days. Serum neutralizing antibody (SNA) titers against BHV1, BVDV1, and BRSV and intranasal IgA concentrations were determined at median ages of 2, 70, 140, 217, and 262 days. Cell-mediated immunity (CMI) against BHV1, BRSV, BVDV1, and P multocida was determined for 16 calves/group.

Results—At median ages of 140 and 217 days, BVDV1 SNA titers were significantly higher for the SC70 group than those for the other groups. Intranasal IgA concentrations and CMI increased over time for all groups. Vaccination at weaning increased SNA titers and CMI in all groups.

Conclusions and Clinical Relevance—SC administration of an MLV vaccine to 70-day-old calves significantly increased BVDV1 antibody titers before weaning.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare the effects of an orally administered corticosteroid (prednisone), an inhaled corticosteroid (flunisolide), a leukotriene-receptor antagonist (zafirlukast), an antiserotonergic drug (cyproheptadine), and a control substance on the asthmatic phenotype in cats with experimentally induced asthma.

Animals—6 cats with asthma experimentally induced by the use of Bermuda grass allergen (BGA).

Procedures—A randomized, crossover design was used to assess changes in the percentage of eosinophils in bronchoalveolar lavage fluid (BALF); airway hyperresponsiveness; blood lymphocyte phenotype determined by use of flow cytometry; and serum and BALF content of BGA-specific IgE, IgG, and IgA determined by use of ELISAs.

Results—Mean ± SE eosinophil percentages in BALF when cats were administered prednisone (5.0 ± 2.3%) and flunisolide (2.5 ± 1.7%) were significantly lower than for the control treatment (33.7 ± 11.1%). We did not detect significant differences in airway hyperresponsiveness or lymphocyte surface markers among treatments. Content of BGA-specific IgE in serum was significantly lower when cats were treated with prednisone (25.5 ± 5.4%), compared with values for the control treatment (63.6 ± 12.9%); no other significant differences were observed in content of BGA-specific immunoglobulins among treatments.

Conclusions and Clinical Relevance—Orally administered and inhaled corticosteroids decreased eosinophilic inflammation in airways of cats with experimentally induced asthma. Only oral administration of prednisone decreased the content of BGAspecific IgE in serum; no other significant local or systemic immunologic effects were detected among treatments. Inhaled corticosteroids can be considered as an alternate method for decreasing airway inflammation in cats with asthma. (Am J Vet Res 2005;66:1121–1127)

Full access
in American Journal of Veterinary Research