Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Lise C. Berg x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE To investigate the role of the major equine acute phase protein serum amyloid A (SAA) in inflammation of equine intraarticular tissues.

SAMPLE Articular chondrocytes and fibroblast-like synoviocytes (FLSs) from 8 horses (4 horses/cell type).

PROCEDURES Chondrocytes and FLSs were stimulated in vitro for various periods up to 48 hours with cytokines (recombinant interleukin [IL]-1β, IL-6, tumor necrosis factor-α, or a combination of all 3 [IIT]) or with recombinant SAA. Gene expression of SAA, IL-6, matrix metalloproteinases (MMP)-1 and −3, and cartilage-derived retinoic acid-sensitive protein were assessed by quantitative real-time PCR assay; SAA protein was evaluated by immunoturbidimetry and denaturing isoelectric focusing and western blotting.

RESULTS All cytokine stimulation protocols increased expression of SAA mRNA and resulted in detectable SAA protein production in chondrocytes and FLSs. Isoforms of SAA in lysed chondrocytes and their culture medium corresponded to those previously detected in synovial fluid from horses with joint disease. When exposed to SAA, chondrocytes and FLSs had increased expression of IL-6, SAA, and MMP3, and chondrocytes had increased expression of MMP-1. Chondrocytes had decreased expression of cartilage-derived retinoic acid-sensitive protein.

CONCLUSIONS AND CLINICAL RELEVANCE Upregulation of SAA in chondrocytes and FLSs stimulated with proinflammatory cytokines and the proinflammatory effects of SAA suggested that SAA may be involved in key aspects of pathogenesis of the joint inflammation in horses.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To investigate the in vitro effects of clinically relevant concentrations of the local anesthetics (LAs) bupivacaine, lidocaine, lidocaine with preservative (LP), mepivacaine, and ropivacaine on equine chondrocyte and fibroblast-like synoviocyte (FLS) viability.

SAMPLE

Chondrocytes and FLSs of the metacarpophalangeal joints of 4 healthy adult horses.

PROCEDURES

Viability of chondrocytes and FLSs was determined with 3 assays: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and trypan blue (TB) exclusion (only FLS). Viability was assessed after 30- and 60-minute exposures to 0.0625%, 0.125%, and 0.25% bupivacaine; 0.25%, 0.5%, and 1% lidocaine; 0.25%, 0.5%, and 1% LP; 0.25%, 0.5%, and 1% mepivacaine; and 0.125%, 0.25%, and 0.5% ropivacaine.

RESULTS

Viability of chondrocytes was significantly decreased with exposure to 0.25% bupivacaine, 1% lidocaine, 1% LP, 1% mepivacaine, and 0.25% ropivacaine. Viability of FLSs was significantly decreased with exposure to 0.25% bupivacaine, 1% mepivacaine, 1% LP, and 0.5% ropivacaine.

CONCLUSIONS AND CLINICAL RELEVANCE

Clinically relevant concentrations of LAs had in vitro time- and concentration-dependent cytotoxicity for chondrocytes and FLSs isolated from the metacarpophalangeal joints of healthy horses. Bupivacaine was more toxic to chondrocytes than lidocaine, mepivacaine, and ropivacaine, whereas bupivacaine, LP, mepivacaine, and ropivacaine were more toxic to FLSs than preservative-free lidocaine. Several LAs may negatively affect chondrocyte and FLS viability.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate histologic changes and gene expression patterns in body and limb wounds in horses in response to bacterial inoculation.

SAMPLE

Wound biopsy specimens from 6 horses collected on days 7, 14, 21, and 27 after excisional wounds (20 wounds/horse) were created over the metacarpal and metatarsal region and lateral thoracic region (body) and then inoculated or not inoculated on day 4 with Staphylococcus aureus and Pseudomonas aeruginosa.

PROCEDURES

Specimens were histologically scored for the amount of inflammation, edema, angiogenesis, fibrosis organization, and epithelialization. Quantitative PCR assays were performed to quantify gene expression of 10 inflammatory, proteolytic, fibrotic, and hypoxia-related markers involved in wound healing.

RESULTS

Except for gene expression of interleukin-6 on day 27 and tumor necrosis factor-α on day 14, bacterial inoculation had no significant effect on histologic scores and gene expression. Gene expression of interleukin-1β and −6, serum amyloid A, and matrix metalloproteinase-9 was higher in limb wounds versus body wounds by day 27. Gene expression of cellular communication network factor 1 was higher in limb wounds versus body wounds throughout the observation period.

CONCLUSIONS AND CLINICAL RELEVANCE

The lack of clear markers of wound infection in this study reflected well-known difficulties in detecting wound infections in horses. Changes consistent with protracted inflammation were evident in limb wounds, and gene expression patterns of limb wounds shared similarities with those of chronic wounds in humans. Cellular communication network factor warrants further investigation and may be useful in elucidating the mechanisms underlying poor limb wound healing in horses.

Full access
in American Journal of Veterinary Research