Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Linda Lee-Ambrose x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the effect of pamidronate disodium on the in vitro viability of osteosarcoma cells and non-neoplastic cells from dogs.

Sample Population—3 osteosarcoma and 1 fibroblast cell lines derived from dogs.

Procedure—Cell counts and cell viability assays were performed in cultures of osteosarcoma cells (POS, HMPOS, and COS31 cell lines) and fibroblasts after 24, 48, and 72 hours of incubation with pamidronate at concentrations of 0.001 to 1,000µM or with no drug (control treatment). Percentage viability was determined in cell samples for each concentration of pamidronate and each incubation time. A DNA fragmentation analysis was performed to assess bisphosphonate- induced apoptosis.

Results—Osteosarcoma cell viability decreased significantly in a concentration- and time-dependent manner at pamidronate concentrations ranging from 100 to 1,000µM, most consistently after 48 and 72 hours' exposure. In treated osteosarcoma cells, the lowest percentage cell viability was 34% (detected after 72 hours' exposure to 1,000µM pamidronate). Conversely, 72 hours' exposure to 1,000µM pamidronate did not significantly reduce fibroblast viability (the lowest percentage viability was 76%). After 72 hours of exposure, pamidronate did not cause DNA fragmentation in POS or HMPOS cells.

Conclusions and Clinical Relevance—Results indicate that pamidronate may have the potential to inhibit osteosarcoma growth in dogs, possibly through a nonapoptotic mechanism. The clinical relevance of these in vitro findings remains to be determined, but administration of pamidronate may potentially be indicated as an adjuvant treatment in chemotherapeutic protocols used in dogs. (Am J Vet Res 2005;66: 885–891)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether exposure of canine osteosarcoma cells to deracoxib or piroxicam results in decreased viability, whether the cytotoxic effects of deracoxib and piroxicam involve induction of apoptosis, and whether deracoxib is a more potent inhibitor of osteosarcoma cell growth than piroxicam.

Sample Population—1 fibroblast and 3 osteosarcoma cell lines.

Procedure—Cell counts and viability assays were performed using osteosarcoma cells (POS, highly metastatic POS, and canine osteosarcoma cell 31) and fibroblasts after 72 hours of incubation with deracoxib at concentrations of 0.5µM to 500µM or piroxicam at concentrations of 1µM to 1,000µM. Percentage viability was determined for each concentration. A DNA fragmentation analysis was performed to assess drug-induced apoptosis.

Results—Concentration of deracoxib required for 50% inhibition of cell viability (IC50) was reached in all 3 osteosarcoma cell lines and ranged from 70 to 150µM, whereas the IC50 for piroxicam was only reached in the POS cell line at 500µM. Neither deracoxib nor piroxicam induced sufficient toxicity in fibroblasts to reach an IC50. Exposure of osteosarcoma cells to cytotoxic concentrations of deracoxib and piroxicam did not result in DNA fragmentation.

Conclusions and Clinical Relevance—Intermediate and high concentrations of deracoxib and high concentrations of piroxicam were cytotoxic to osteosarcoma cells; neither drug inhibited cell viability at typical plasma concentrations in dogs. Deracoxib inhibited viability of cells at concentrations that did not affect fibroblast viability. There was no evidence of apoptosis induction for either drug; however, only 1 cell line was evaluated for apoptosis induction and only for a limited selection of drug concentrations. (Am J Vet Res 2005;66:1961–1967)

Full access
in American Journal of Veterinary Research