Search Results
You are looking at 1 - 10 of 19 items for
- Author or Editor: Leah A. Cohn x
- Refine by Access: All Content x
Abstract
Objective—To identify the most common etiologic diagnosis and any historical, physical, or other diagnostic variables associated with a definitive etiologic diagnosis for chronic nasal discharge in cats.
Design—Retrospective case series.
Animals—75 cats with nasal discharge of ≥ 1 month's duration.
Procedures—Medical records of affected cats were reviewed for information on signalment, clinical signs, duration and type of nasal discharge, results of clinical examination, laboratory findings, and advanced imaging findings.
Results—A specific etiologic diagnosis for nasal discharge was identified in only 36% of cats. Neoplasia (carcinoma or lymphoma) was the most common etiologic diagnosis. Character and location of nasal discharge did not contribute greatly toward a specific etiologic diagnosis. Sneezing and vomiting were the most common concurrent clinical signs. Routine CBC, serum biochemical panel, and urinalysis did not contribute to a specific etiologic diagnosis. An etiologic diagnosis was more likely in older cats and cats that underwent advanced imaging studies and nasal biopsy.
Conclusions and Clinical Relevance—Although advanced diagnostic testing, including imaging studies and biopsy, increases the likelihood of achieving an etiologic diagnosis, the cause of chronic nasal discharge in cats often remains elusive.
Abstract
Objective—To determine effects of selegiline hydrochloride, phenylpropanolamine (PPA), or a combination of both on physiologic and behavioral variables in dogs.
Animals—40 adult hound-type dogs.
Procedure—Dogs were assigned to 4 groups. One group received selegiline (1 mg/kg, PO, q 24 h) and PPA (1.1 mg/kg, PO, q 8 h), a second group received selegiline alone, a third group received PPA alone, and a fourth group received neither drug. Dogs were observed 3 times/d throughout the 30-day study (daily during the first week, on alternate days during the next 2 weeks, and again daily during the final week). Observers recorded rectal temperature, pulse, respiratory rate, oscillometric blood pressure, and lead-II ECG and assessed 4 behaviors, using an analogue scale. Variables were compared among treatment groups by use of a 2-factor ANOVA with data categorized into three 10-day treatment periods. A similar comparison was made among treatment groups with data categorized by time of observation (morning, afternoon, or evening) for all study days.
Results—Variables did not differ among groups at study initiation. Pulse rate was the only variable that differed significantly among treatment groups during the study. During the first 10 days of treatment, dogs receiving PPA had a lower pulse rate than dogs that did not. Although signs of illness were apparent in a few dogs, illness did not appear to be related to treatment.
Conclusion and Clinical Relevance—Adverse effects were not detected after administration of selegiline, PPA, or a combination of the drugs in healthy dogs. (Am J Vet Res 2002;63:827–832)
Abstract
Objective—To determine erythrocyte survival time in Greyhounds.
Animals—6 Greyhounds used as blood donors and 3 privately owned non-Greyhound dogs.
Procedures—In vivo biotinylation of erythrocytes was performed by infusion of biotin—Nhydroxysuccinimide into each dog via a jugular vein catheter. Blood samples were collected 12 hours later and then at weekly intervals and were used to determine the percentage of biotin-labeled erythrocytes at each time point. Erythrocytes were washed, incubated with avidin—fluorescein isothiocyanate, and washed again before the percentage of biotinylated erythrocytes was measured by use of flow cytometry. Survival curves for the percentage of biotinylated erythrocytes were generated, and erythrocyte survival time was defined as the x-intercept of a least squares best-fit line for the linear portion of each curve.
Results—The R for survival curves ranged from 0.93 to 0.99 during the first 10 weeks after infusion of erythrocytes. Erythrocyte survival time for the 3 non-Greyhound dogs was 94, 98, and 116 days, respectively, which was consistent with previously reported values. Erythrocyte survival time for the 6 Greyhounds ranged from 83 to 110 days (mean, 93 days; median, 88 days). As determined by use of in vivo biotinylation, erythrocyte survival times in Greyhounds were similar to those determined for non-Greyhound dogs and did not differ significantly from erythrocyte survival times reported previously for non-Greyhound dogs.
Conclusions and Clinical Relevance—Erythrocyte survival time was similar in Greyhounds and non-Greyhound dogs. Greyhounds can be used as erythrocyte donors without concerns about inherently shorter erythrocyte survival time. (Am J Vet Res 2010;71:1033–1038)
Abstract
Objective—To determine whether platelet clumps are homogeneously distributed in blood samples, and whether platelet concentrations (PC) obtained by use of impedance and buffy coat analysis can be considered minimum values when platelet clumps are present.
Design—Prospective study.
Sample Population—50 blood samples obtained from 30 dogs.
Procedure—10 blood samples containing platelet clumps were used and 10 smears were made from each sample; amount of platelet clumping was graded for all 100 smears. Blood from each of 20 healthy dogs was divided between 2 EDTA tubes before and after platelet clumping was induced by adenosine diphosphate (ADP). The PC for each ADP-treated and untreated sample were measured, using impedance and quantitative buffy coat analyzers.
Results—Platelet clumps were evident in all 100 blood smears, but the amount of clumping varied considerably within some samples. Using the impedance analyzer, the PC of ADP-treated samples were significantly lower and never higher than the PC of untreated samples. Using the buffy coat analyzer, some ADPtreated samples had increased PC; however, significant differences were not detected between treated and untreated samples.
Conclusions and Clinical Relevance—Platelet clumping was not homogeneous within blood samples. When platelet clumps were identified by direct examination of blood smears, the PC detected by use of the impedance analyzer could be considered minimum values. In contrast, the PC detected by use of the buffy coat analyzer were sometimes increased. Useful information can be obtained by measuring PC in blood with platelet clumps; values obtained by use of impedance can be considered minimums, and values obtained by use of buffy coat analysis may be either minimum values or reasonable estimates of PC. (J Am Vet Med Assoc 2001;219:1552–1556)
Abstract
Objective—To compare blood glucose concentrations obtained using a point-of-care (POC) analyzer, 5 portable blood glucose meters (PBGM), and a color reagent test strip with concentrations obtained using a reference method, and to compare glucose concentrations obtained using fresh blood samples in the PBGM with concentrations obtained using blood anticoagulated with lithium heparin.
Design—Case series.
Sample Population—110 blood samples from 34 dogs; glucose concentration of the samples ranged from 41 to 596 mg/dl.
Procedure—Logistic regression was used to compare blood glucose concentrations obtained with the various devices with reference method concentrations. Ease of use was evaluated subjectively. Percentage of times a clinical decision would have been altered if results of each of these methods had been used, rather than results of the reference method, was calculated.
Results—For 3 of the PBGM, blood glucose concentrations obtained with fresh blood were not significantly different from concentrations obtained with blood samples anticoagulated with lithium heparin. None of the devices provided results statistically equivalent to results of the reference method, but the POC analyzer was more accurate than the others. For some samples, reliance on results of the PBGM or the color test strip would have resulted in erroneous clinical decisions.
Conclusions and Clinical Relevance—Although commercially available PBGM and color test strips provided blood glucose concentrations reasonably close to those obtained with reference methods, some devices were more accurate than others. Use of results from these devices could lead to erroneous clinical decisions in some cases. ( J Am Vet Med Assoc 2000;216:198–202)