Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Laura Huber x
  • Refine by Access: All Content x
Clear All Modify Search



To compare soil concentrations of macrolide- and rifampicin-resistant Rhodococcus equi strains (MRRE) on horse-breeding farms that used thoracic ultrasonographic screening (TUS) to identify foals with subclinical pneumonia combined with subsequent administration of macrolides and rifampin to affected foals (TUS farms) versus soil concentrations on farms that did not (non-TUS farms), determine whether the combined use of TUS and antimicrobial treatment of subclinically affected foals was associated with soil concentration of MRRE, and assess whether there were temporal effects on soil concentrations of MRRE during the foaling season.


720 soil samples and 20 completed questionnaires from 20 horse-breeding farms (10 TUS farms and 10 non-TUS farms) in central Kentucky.


A questionnaire was used to gather information from participating farms about their 2019 foaling season. Soil samples were collected during January, March, May, and July 2019 for bacterial culture and antimicrobial susceptibility testing to identify any isolates of MRRE. Results were compared for TUS farms versus non-TUS farms. Linear mixed-effects modeling was used to evaluate for potential associations between the soil concentration of MRRE and the use of TUS.


Overall, the sum of the mean soil concentrations of MRRE was significantly higher for TUS farms (8.85 log10-transformed CFUs/g) versus non-TUS farms (7.37 log10-transformed CFUs/g).


Our findings indicated that farms that use TUS to identify foals with subclinical pneumonia for antimicrobial treatment select for antimicrobial-resistant R equi strains. Because prognosis is worse for foals infected with resistant versus nonresistant strains of R equi, prudent use of antimicrobials to treat foals with subclinical pulmonary lesions attributed to R equi is recommended.

Full access
in Journal of the American Veterinary Medical Association



To compare initial titers, duration, and residual clinical protection of passively transferred bovine respiratory syncytial virus (BRSV) nasal immunoglobulin (Ig) G-1 and IgA, and serum neutralizing (SN) antibodies.


40 three-month-old beef steers born either to unvaccinated or vaccinated cows.


During the last trimester of gestation, cows were assigned randomly to either vaccinated or unvaccinated groups. Calves were grouped on the basis of whether they nursed colostrum from unvaccinated dams (NO-VACC group; n = 20) versus dams vaccinated with 2 doses of an inactivated BRSV vaccine (VACC group; n = 20). At 3 months of age, calves were challenged with BRSV. Respiratory signs were scored. Nasal BRSV IgG-1 and IgA and SN antibodies were compared before and after the challenge. The presence of BRSV in nasal secretions was evaluated by reverse transcription-PCR assays.


Respiratory scores after BRSV challenge were similar between treatment groups. Nasal BRSV IgG-1 and SN antibodies were significantly greater in VACC calves at 48 hours of life; however, by 3 months of age, titers had decayed in both groups. Nasal BRSV IgA titers were minimal after colostrum intake and before the BRSV challenge, and increased in both groups after the challenge. The NO-VACC group had a significantly greater probability of shedding BRSV compared with VACC calves.


At 3 months of age, titers of passively transferred BRSV antibodies in VACC and NO-VACC calves had decayed to nonprotective levels. Calves born to vaccinated dams had a decreased probability of BRSV shedding; however, this was not related to differences in SN or nasal BRSV antibody titers.

Open access
in American Journal of Veterinary Research