Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Laura Bunke x
  • Refine by Access: All Content x
Clear All Modify Search


OBJECTIVE To determine antinociceptive efficacy, behavioral patterns, and respiratory effects associated with dexmedetomidine administration in ball pythons (Python regius).

ANIMALS 12 ball pythons.

PROCEDURES Antinociception was assessed by applying an infrared heat stimulus to the cranioventral surface of snakes during 2 experiments. Thermal withdrawal latency was measured at 0, 2, and 24 hours after SC injections of dexmedetomidine (0.1 or 0.2 mg/kg) or saline (0.9% NaCl) solution and at 0 to 60 minutes after injection of dexmedetomidine (0.1 mg/kg) or saline solution. Behaviors were recorded at 0, 2, and 24 hours after administration of dexmedetomidine (0.1 mg/kg) or saline solution. Tongue flicking, head flinch to the approach of an observer's hand, movement, and righting reflex were scored. Respiratory frequency was measured by use of plethysmography to detect breathing-related movements after injection of dexmedetomidine (0.1 mg/kg) or saline solution.

RESULTS Mean baseline withdrawal latency was 5 to 7 seconds; saline solution did not alter withdrawal latency. Dexmedetomidine increased withdrawal latency by 18 seconds (0.2 mg/kg) and 13 seconds (0.1 mg/kg) above baseline values at 2 hours. Increased withdrawal latency was detected within 15 minutes after dexmedetomidine administration. At 2 hours after injection, there were few differences in behavioral scores. Dexmedetomidine injection depressed respiratory frequency by 55% to 70%, compared with results for saline solution, but snakes continued to breathe without prolonged apnea.

CONCLUSIONS AND CLINICAL RELEVANCE Dexmedetomidine increased noxious thermal withdrawal latency without causing excessive sedation. Therefore, dexmedetomidine may be a useful analgesic drug in ball pythons and other snake species.

Full access
in American Journal of Veterinary Research



To evaluate SC administration of alfaxalone-midazolam and dexmedetomidine-midazolam for sedation of ball pythons (Python regius).


12 healthy juvenile ball pythons.


In a randomized crossover study, each snake was administered a combination of alfaxalone (5 mg/kg [2.3 mg/lb]) and midazolam (0.5 mg/kg [0.23 mg/lb]) and a combination of dexmedetomidine (0.05 mg/kg [0.023 mg/lb]) and midazolam (0.5 mg/kg), SC, with a washout period of at least 7 days between protocols. Respiratory and heart rates and various reflexes and behaviors were assessed and compared between protocols. Forty-five minutes after protocol administration, sedation was reversed by SC administration of flumazenil (0.05 mg/kg) alone or in combination with atipamezole (0.5 mg/kg; dexmedetomidine-midazolam protocol only). Because of difficulties with visual assessment of respiratory effort after sedative administration, the experiment was repeated for a subset of 3 ball pythons, with plethysmography used to assess respiration.


Both protocols induced a similar level of moderate sedation with no adverse effects aside from transient apnea. Cardiopulmonary depression was more profound, but time to recovery after reversal was significantly shorter, for the dexmedetomidine-midazolam protocol than for the alfaxalone-midazolam protocol. Plethysmographic findings were consistent with visual observations and suggested that snakes compensated for a decrease in respiratory rate by increasing tidal volume amplitude.


Results indicated that both protocols induced clinically relevant sedation in ball pythons and should be useful for minor procedures such as venipuncture and diagnostic imaging. However, caution should be used when sedating snakes with compromised cardiopulmonary function. (J Am Vet Med Assoc 2020;256:573-579

Full access
in Journal of the American Veterinary Medical Association