Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: L. Abbigail Granger x
  • Refine by Access: All Content x
Clear All Modify Search



To measure serum fibroblast growth factor-19 (FGF-19) concentration and gallbladder volume in healthy dogs before and after feeding to determine whether serum FGF-19 concentration increases following gallbladder contraction and to assess FGF-19 stability in blood samples kept under different storage conditions after collection in tubes containing no anticoagulant or in serum separator tubes.


10 healthy dogs of various ages and breeds (30 blood samples and 30 gall-bladder volume measurements).


Serum FGF-19 concentration was measured with a commercially available ELISA. Gallbladder volume was determined ultrasonographically. Blood samples and gallbladder measurements were obtained from the dogs after food had been withheld for 12 hours (baseline) and at 1 and 3 hours after feeding. The stability of serum FGF-19 was assessed in samples collected in tubes containing no anticoagulant or in serum separator tubes and stored at –80°C for variable intervals or 4°C for 1 or 5 days.


Serum FGF-19 concentration was significantly increased from baseline at 1 and 3 hours after feeding. There was a significant decrease in gallbladder volume 1 hour after feeding, compared with baseline findings. Regardless of collection tube used, concentrations of FGF-19 in serum obtained from blood samples that were collected and immediately stored at –80°C differed significantly from concentrations in serum obtained from blood samples that had been collected and stored at 4°C for 5 days.


Results indicated that postprandial gallbladder contraction results in increases of serum FGF-19 concentration in healthy dogs. Assessment of circulating FGF-19 concentration could be used to detect disruptions in the enterohepatic-biliary axis in dogs.

Full access
in American Journal of Veterinary Research
in Journal of the American Veterinary Medical Association


OBJECTIVE To use CT-derived measurements to create a ferret-specific formula for body surface area (BSA) to improve chemotherapeutic dosing.

ANIMALS 25 adult ferrets (19 live and 6 cadavers).

PROCEDURES Live subjects were weighed, and body measurements were obtained by each of 3 observers while ferrets were awake and anesthetized. Computed tomography was performed, and a 3-D surface model was constructed with open-source imaging software, from which BSA was estimated. The CT-derived values were compared with BSA calculated on the basis of the traditional tape method for 6 cadavers. To further validate CT analysis software, 11 geometric shapes were scanned and their CT-derived values compared with those calculated directly via geometric formulas. Agreement between methods of surface area estimation was assessed with linear regression. Ferret-specific formulas for BSA were determined with nonlinear regression models.

RESULTS Repeatability among the 3 observers was good for all measurements, but some measurements differed significantly between awake and anesthetized ferrets. Excellent agreement was found between measured versus CT-derived surface area of shapes, traditional tape– versus CT-derived BSA of ferret cadavers, and CT-derived BSA of cadavers with and without monitoring equipment. All surface area formulas performed relatively similarly.

CONCLUSIONS AND CLINICAL RELEVANCE CT-derived BSA measurements of ferrets obtained via open-source imaging software were reliable. On the basis of study results, the recommended formula for BSA in ferrets would be 9.94 × (body weight)2/3; however, this represented a relatively minor difference from the feline-derived formula currently used by most practitioners and would result in little practical change in drug doses.

Full access
in American Journal of Veterinary Research