Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Kurt T. Selberg x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To describe the technique and assess the diagnostic potential and limitations of tomosynthesis for imaging of the metacarpophalangeal joint (MCPJ) of equine cadavers; compare the tomosynthesis appearance of pathological lesions with their conventional radiographic, CT, and MRI appearances; and evaluate all imaging findings with gross lesions of a given MCPJ.

SAMPLE

Distal portions of 4 forelimbs from 4 equine cadavers.

PROCEDURES

The MCPJs underwent radiography, tomosynthesis (with a purpose-built benchtop unit), CT, and MRI; thereafter, MCPJs were disarticulated and evaluated for the presence of gross lesions. The ability to identify pathological lesions on all images was assessed, followed by semiobjective scoring for quality of the overall image and appearance of the subchondral bone, articular cartilage, periarticular margins, and adjacent trabecular bone of the third metacarpal bone, proximal phalanx, and proximal sesamoid bones of each MCPJ.

RESULTS

Some pathological lesions in the subchondral bone of the third metacarpal bone were detectable with tomosynthesis but not with radiography. Overall, tomosynthesis was comparable to radiography, but volumetric imaging modalities were superior to tomosynthesis and radiography for imaging of subchondral bone, articular cartilage, periarticular margins, and adjacent bone.

CONCLUSIONS AND CLINICAL RELEVANCE

With regard to the diagnostic characterization of equine MCPJs, tomosynthesis may be more accurate than radiography for identification of lesions within subchondral bone because, in part, of its ability to reduce superimposition of regional anatomic features. Tomosynthesis may be useful as an adjunctive imaging technique, highlighting subtle lesions within bone, compared with standard radiographic findings.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To perform a pilot study with the intent of assessing the feasibility of a modified subchondroplasty (mSCP) technique in a validated preclinical equine model of full-thickness articular cartilage loss and evaluate the short-term patient response to the injected materials.

ANIMALS

3 adult horses.

PROCEDURES

Two 15-mm-diameter full-thickness cartilage defects were created on the medial trochlear ridge of each femur. Defects were treated with microfracture and then filled by 1 of 4 techniques: (1) autologous fibrin graft (FG) via subchondral injection of fibrin glue (FG), (2) autologous fibrin graft via direct injection of FG, (3) subchondral injection of a calcium phosphate bone substitute material (BSM) with direct injection of FG, and (4) untreated control. Horses were euthanized after 2 weeks. Patient response was evaluated via serial lameness examination, radiography, magnetic resonance imaging, computed tomography, gross evaluation, microcomputed tomography, and histopathology.

RESULTS

All treatments were successfully administered. The injected material perfused through the underlying bone into the respective defects without adversely affecting the surrounding bone and articular cartilage. Increased new bone formation was seen at the margins of the trabecular spaces containing BSM. There was no treatment effect on the amount or composition of tissue within defects.

CLINICAL RELEVANCE

The mSCP technique was a simple, well-tolerated technique in this equine articular cartilage defect model without significant adverse effects to host tissues after 2 weeks. Larger studies with long-term follow-ups are warranted.

Open access
in American Journal of Veterinary Research

Abstract

Objective—To investigate tissue diffusion of anesthetic agent following administration of low palmar nerve blocks (LPBs) in horses.

Design—Randomized clinical trial.

Animals—12 adult horses.

Procedures—In 9 horses, mepivacaine hydrochloride–iohexol (50:50 dilution) injections were administered bilaterally (2 or 4 mL/site) to affect the medial and lateral palmar and palmar metacarpal nerves (4 sites). Lateral radiographic views of both metacarpal regions were obtained before and at 5, 15, 30, 60, 90, and 120 minutes after block administration; proximal and distal extents of contrast medium (and presumably anesthetic agent) diffusion from palmar and palmar metacarpal injection sites were measured and summed to determine total diffusion. Methylene blue solution was injected in forelimbs of 3 other horses that were subsequently euthanized to determine the potential route of anesthetic agent diffusion to the proximal suspensory ligament region.

Results—Mean extents of proximal and total contrast medium diffusion were 4.0 and 6.6 cm, respectively, for the palmar metacarpal nerves and 4.3 and 7.1 cm, respectively, for the palmar nerves. Subtle proximal diffusion secondary to lymphatic drainage was evident in 17 of the 18 limbs. Contrast medium was detected in the metacarpophalangeal joint or within the digital flexor tendon sheath in 8 and 7 limbs, respectively. In the cadaver limbs, methylene blue solution did not extend to the proximal suspensory ligament region.

Conclusions and Clinical Relevance—In horses, LPBs resulted in minimal proximal diffusion of anesthetic agent from the injection sites. Limbs should be aseptically prepared prior to LPB administration because inadvertent intrasynovial injection may occur.

Full access
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association