Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Klien G. van Dam x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To investigate the effects of exercise on activation of mitogen-activated protein kinase (MAPK) signaling proteins in horses.

Animals—6 young trained Standardbred geldings.

Procedure—Horses performed a 20-minute bout of exercise on a treadmill at 80% of maximal heart rate. Muscle biopsy specimens were obtained from the vastus lateralis and pectoralis descendens muscles before and after exercise. Amount of expression and intracellular location of phosphospecific MAPK pathway intermediates were determined by use of western blotting and immunofluorescence staining.

Results—Exercise resulted in a significant increase in phosphorylation of p38 pathway intermediates, c-Jun NH2 terminal kinase (JNK), and heat shock protein 27 (HSP27) in the vastus lateralis muscle, whereas no significant changes were found in phosphorylation of extracellular regulated kinase. In the pectoralis descendens muscle, phosphorylation of p38 and HSP27 was significantly increased after exercise. Immunohistochemical analysis revealed fiber-type– specific locations of phosphorylated JNK in type 2a/b intermediate and 2b fibers and phosphorylated p38 in type 1 fibers. Phosphorylated HSP27 was strongly increased after exercise in type 1 and 2a fibers.

Conclusions and Clinical Relevance—The p38 pathway and JNK are activated in the vastus lateralis muscle after a single 20-minute bout of submaximal exercise in trained horses. Phosphorylation of HSP27 as detected in the study reported here is most likely induced through the p38 signaling pathway.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate the expression and localization of glucose transporter 4 (GLUT4) and fatty acid translocase (FAT/CD36) in equine skeletal muscle.

Sample Population—Muscle biopsy specimens obtained from 5 healthy Dutch Warmblood horses.

Procedures—Percutaneous biopsy specimens were obtained from the vastus lateralis, pectoralis descendens, and triceps brachii muscles. Cryosections were stained with combinations of GLUT4 and myosin heavy chain (MHC) specific antibodies or FAT/CD36 and MHC antibodies to assess the fiber specific expression of GLUT4 and FAT/CD36 in equine skeletal muscle via indirect immunofluorescent microscopy.

Results—Immunofluorescent staining revealed that GLUT4 was predominantly expressed in the cytosol of fast type 2B fibers of equine skeletal muscle, although several type 1 fibers in the vastus lateralis muscle were positive for GLUT4. In all muscle fibers examined microscopically, FAT/CD36 was strongly expressed in the sarcolemma and capillaries. Type 1 muscle fibers also expressed small intracellular amounts of FAT/CD36, but no intracellular FAT/CD36 expression was detected in type 2 fibers.

Conclusions and Clinical Relevance—In equine skeletal muscle, GLUT4 and FAT/CD36 are expressed in a fiber type selective manner. ( Am J Vet Res 2004;65:951–956)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To investigate whether protein kinase C (PKC) isoforms are expressed in equine skeletal muscle and determine their distribution in various types of fibers by use of immunofluorescence microscopy.

Animals—5 healthy adult Dutch Warmblood horses.

Procedure—In each horse, 2 biopsy specimens were obtained from the vastus lateralis muscle. Cryosections of equine muscle were stained with PKC isoform (α, β1, β2, δ, ξ, or ζ)-specific polyclonal antibodies and examined by use of a fluorescence microscope. Homogenized muscle samples were evaluated via western blot analysis.

Results—The PKC α, β1, β2, δ, ξ, and ζ isoforms were localized within the fibers of equine skeletal muscle. In addition, PKC α and β2 were detected near or in the plasma membrane of muscle cells. For some PKC isoforms, distribution was specific for fiber type. Staining of cell membranes for PKC α was observed predominantly in fibers that reacted positively with myosin heavy chain (MHC)-IIa; PKC δ and ξ staining were more pronounced in MHC-I-positive fibers. In contrast, MHC-I negative fibers contained more PKC ζ than MHC-I-positive fibers. Distribution of PKC β1 was equal among the different fiber types.

Conclusions and Clinical Relevance—Results indicated that PKC isoforms are expressed in equine skeletal muscle in a fiber type-specific manner. Therefore, the involvement of PKC isoforms in signal transduction in equine skeletal muscle might be dependent on fiber type. ( Am J Vet Res 2004; 65:69–73)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the effects of short-term IV administration of hydrocortisone or equine growth hormone (eGH) or long-term IM administration of eGH to horses on tissue sensitivity to exogenous insulin.

Animals—5 Standardbreds and 4 Dutch Warmblood horses.

Procedure—The euglycemic-hyperinsulinemic clamp technique was used to examine sensitivity of peripheral tissues to exogenous insulin 24 hours after administration of a single dose of hydrocortisone (0.06 mg/kg), eGH (20 µg/kg), or saline (0.9% NaCl) solution and after long-term administration (11 to 15 days) of eGH to horses. The amounts of metabolized glucose (M) and plasma insulin concentration (I) were determined.

Results—Values for M and the M-to-I ratio were significantly higher 24 hours after administration of a single dose of hydrocortisone than after single-dose administration of eGH or saline solution. After long-term administration of eGH, basal I concentration was increased and the mean M-to-I ratio was 22% lower, compared with values for horses treated with saline solution.

Conclusions and Clinical Relevance—Increases in M and the M-to-I ratio after a single dose of hydrocortisone imply that short-term hydrocortisone treatment increases glucose use by, and insulin sensitivity of, peripheral tissues. Assuming a single dose of hydrocortisone improves sensitivity of peripheral tissues to insulin, it may be an interesting candidate for use in reducing insulin resistance in peripheral tissues of horses with several disease states. In contrast, long-term administration of eGH decreased tissue sensitivity to exogenous insulin associated with hyperinsulinemia. Therefore, increased concentrations of growth hormone may contribute to insulin resistance in horses with various disease states. (Am J Vet Res 2005;66:1907–1913)

Full access
in American Journal of Veterinary Research