Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Kenny V. Brock x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To develop a high-speed, continuous-flow, automated plasmapheresis procedure for the high-volume harvest of equine plasma in accordance with current good manufacturing practice.

Animals—143 horses (predominantly draft breeds) between 3 and 10 years of age at the time of purchase.

Procedures—Adaptations were made to automated plasmapheresis instruments and sterile disposable collection sets, which allowed for dual-instrument, continuous-flow operation. Donor horses were connected to the apparatus via 2 catheters (1 inserted in each jugular vein). The instruments removed whole blood from donors, fractionated the blood, diverted plasma to collection bags, and simultaneously returned concentrated cells to the donors. Plasmapheresis was performed on donor horses at 14-day intervals with a maximum of 22 mL of plasma/kg of donor body weight harvested during each plasmapheresis procedure.

Results—During a 5-year period, 3,240 plasmapheresis procedures were performed and > 50,000 L of sterile equine plasma was harvested in accordance with current good manufacturing practice. Donors typically remained calm during the plasmapheresis procedures and tolerated the procedures well. The high-volume and frequent plasma harvest did not result in sustained hypoproteinemia in donor horses. Adverse events associated with the automated plasmapheresis technique were infrequent, and the recurrence of adverse events was minimized by making minor adjustments to the procedure.

Conclusions and Clinical Relevance—The automated plasmapheresis procedure described in this report can be used to safely harvest equine plasma or to perform therapeutic plasmapheresis in horses.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the effects of intensive serial plasmapheresis on total plasma protein and total IgG concentrations in donor horses involved in a plasmapheresis program.

Animals—18 horses (13 mares and 5 geldings; 13 Belgians, 3 Percherons, 1 Standardbred, and 1 warmblood) ranging from 7 to 14 years of age (mean ± SD, 10 ± 3 years) and weighing 822 ± 128 kg.

Procedures—Horses from which 22 mL of plasma/kg of donor body weight was harvested at 14-day intervals for a minimum of 8 consecutive plasmapheresis donations were retrospectively selected for use in the evaluation. Automated plasmapheresis procedures were performed by use of 2 modified plasmapheresis instruments/donor horse. Plasma samples were obtained at each donation and used for determination of total protein and total IgG concentrations. Total plasma protein concentrations were determined via refractometry. A commercially available ELISA was used to determine total equine IgG concentrations.

Results—The 18 donor horses were used in 8 to 19 serial donations (mean ± SD, 13 ± 3 donations) during the study. Donor horses had significant decreases in both plasma protein and IgG concentrations over the study period.

Conclusions and Clinical Relevance—Serial plasmapheresis procedures caused significant decreases in both plasma protein and IgG concentrations in donor horses; however, decreases were not physiologically relevant. Performing plasmapheresis in horses in accordance with the evaluated automated plasmapheresis procedures did not result in a critical decrease in total plasma protein or total IgG concentrations.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the effects of constant exposure to cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) on health and performance of feedlot cattle.

Design—3 controlled trials.

Animals—Crossbred feedlot cattle (trial 1, n = 184; trial 2, 138; trial 3, 138).

Procedures—Weaned calves were or were not vaccinated against BVDV at feedlot arrival (trial 1) or 2 (trial 2) or 3 (trial 3) weeks before feedlot arrival. During trial 1, half of the calves were commingled with PI cattle throughout the feeding period. During trial 2, 63 calves were exposed to PI cattle before weaning and all calves were exposed to PI cattle throughout the feeding period. During trial 3, all study calves were exposed to PI cattle throughout the feeding period. Morbidity and mortality rates and average daily gain (ADG) data were analyzed.

Results—During trial 1, calves maintained with PI cattle had a higher morbidity rate regardless of BVDV vaccination than did calves not exposed to PI cattle; however, for calves maintained with PI cattle, the morbidity rate for those vaccinated against BVDV was less than that for those not vaccinated against BVDV. During trial 2, calves exposed to PI cattle before weaning or vaccinated against BVDV had lower morbidity and mortality rates and increased ADG, compared with those for calves not exposed to PI cattle before weaning or vaccinated against BVDV. During trial 3, health and performance did not vary between calves that were and were not vaccinated against BVDV.

Conclusions and Clinical Relevance—Exposure of cattle to BVDV naturally or through vaccination before or at feedlot arrival mitigated the negative effects of constant exposure to PI cattle.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate onset of protection induced by modified-live virus (MLV) bovine viral diarrhea virus (BVDV) vaccine administered 7, 5, or 3 days before inoculation with type 1b BVDV (strain NY-1).

Animals—40 calves.

Procedures—Calves were assigned to 4 groups: an unvaccinated control group or groups vaccinated with MLV vaccine containing BVDV types 1a and 2 at 7, 5, or 3 days, before inoculation with NY-1 BVDV. Blood samples were collected for leukocyte counts, serum virus neutralization, and virus isolation (VI); nasal swab specimens (NSSs) were obtained for VI, and rectal temperatures were monitored for 14 days after inoculation.

Results—No significant differences in leukocyte counts or rectal temperatures were detected after BVDV inoculation in vaccinated calves. Vaccinated calves had reduced viremia and viral shedding after inoculation, compared with results for unvaccinated calves. On day 5 after inoculation, a higher proportion of calves vaccinated 3 days before inoculation had positive VI from NSSs, compared with NSS VI results for calves vaccinated 5 and 7 days before inoculation. Unvaccinated calves had leukopenia on days 3, 5, and 6 and had higher rectal temperatures on days 7 and 8 after inoculation, compared with temperatures before inoculation. All unvaccinated calves had ≥ 1 positive VI result from NSSs 3 to 11 days after inoculation, and 4 became viremic.

Conclusions and Clinical Relevance—MLV BVDV vaccine prevented fever, viremia, and leukopenia in calves challenge inoculated with NY-1 BVDV. A high proportion of calves vaccinated 3 days before inoculation shed BVDV after inoculation.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether viral involvement with platelets obtained from cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) is associated with altered platelet function or decreased platelet counts.

Sample Population—Platelets obtained from 8 cattle PI with BVDV and 6 age-, sex-, and breed-matched uninfected control cattle.

Procedure—Manual platelet counts were determined, and platelet function was assessed through optical aggregometry by use of the aggregation agonists ADP and platelet-activating factor. Identification of BVDV in serum and preparations of purified platelets was determined by use of virus isolation tests.

Results—No significant difference in platelet counts was detected between cattle PI with BVDV and control cattle. In response to the aggregation agonists, maximum aggregation percentage and slope of the aggregation curve were not significantly different between cattle PI with BVDV and control cattle. We isolated BVDV from serum of all PI cattle and from purified platelets of 6 of 8 PI cattle, but BVDV was not isolated from serum or platelets of control cattle.

Conclusions and Clinical Relevance—Isolation of BVDV from platelets in the peripheral circulation of cattle immunotolerant to BVDV does not result in altered platelet function or decreases in platelet counts. (Am J Vet Res 2005;66:1738–1742)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the association between cancer chemotherapy and serum canine distemper virus (CDV), canine parvovirus (CPV), and rabies virus antibody titers in tumor-bearing dogs.

Design—Prospective study.

Animals—21 client-owned dogs with various malignancies and 16 client-owned dogs with lymphoma.

Procedure—In study A, serum antibody titers were measured by use of hemagglutination inhibition (CPV titers) or serum neutralization (CDV titers) before and at least 1 month after initiation of chemotherapy. Baseline values were compared with values obtained from a control population of 122 healthy dogs seen for routine revaccination. Titers were considered protective at ≥ 1:96 for CDV and ≥ 1:80 for CPV.

In study B, serum IgG titers were measured by use of immunofluorescent assay (CDV and CPV titers) and rapid fluorescent focus inhibition test (RFFIT, rabies titers) at baseline and again at weeks 5, 8, and 24 of a standard chemotherapy protocol for treatment of lymphoma. An IgG titer of ≥ 1:50 was considered protective for CPV and CDV. An RFFIT titer of ≥ 0.5 U/ml was considered protective for rabies virus.

Results—Significant changes were not detected in CDV, CPV, and rabies virus titers following chemotherapy in tumor-bearing dogs.

Conclusions and Clinical Relevance—Results suggest that established immunity to CDV, CPV, and rabies virus from previous vaccination is not significantly compromised by standard chemotherapy used to treat tumor-bearing dogs. (J Am Vet Med Assoc 2001;219:1238–1241)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate persistence of bovine viral diarrhea virus (BVDV) in semen after inoculation of postpubertal bulls.

Animals—Three 2-year-old bulls and five 6-month-old calves.

Procedure—3 seronegative 2-year-old bulls were inoculated intranasally with BVDV. Serum and semen samples were obtained at regular intervals until 7 months after inoculation. Serum samples were tested for BVDV by use of virus isolation (VI) and reverse transcription-nested polymerase chain reaction (RTnPCR) tests. Semen samples were tested for virus by use of VI and RT-nPCR tests. Testicular biopsy specimens were obtained 7 months after inoculation and tested for BVDV by use of immunohistochemical analysis and VI and RT-nPCR tests. Semen samples collected from 1 bull immediately before and 5 and 7 months after inoculation were administered IV to seronegative calves, which were monitored for subsequent viremia and seroconversion.

Results—Use of VI and RT-nPCR tests detected transient virus in serum of all bulls. The VI test detected BVDV in semen of 2 bulls for < 21 days after inoculation, whereas RT-nPCR assay detected BVDV until 7 months after inoculation. Virus was detected in testicular biopsy specimens of these 2 bulls by use of immunohistochemical analysis and RT-nPCR assay but could only be isolated from the biopsy specimen of 1 bull. Of the calves administered semen IV to detect infectious virus, only the recipient of semen collected 5 months after inoculation of the adult bull was viremic and seroconverted.

Conclusions and Clinical Relevance—Bovine viral diarrhea virus can persist in semen of acutely infected bulls for several months after exposure. (Am J Vet Res 2003;64:428–434)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the association between respiratory tract infection with bovine coronavirus (BCV), treatment for respiratory tract disease, pulmonary lesions at slaughter, and average daily gain in cattle in feedlots.

Animals—837 calves in feedlots in Ohio and Texas.

Procedure—Nasal swab specimens were obtained from cattle at arrival in a feedlot (day 0) and at various times during the initial 28 days after arrival. Specimens were tested for BCV, using an antigencapture ELISA. Serum samples were obtained at arrival and again 28 days after arrival and tested for antibodies to BCV, using an antibody-detection ELISA. Information was collected regarding treatment for cattle with respiratory tract disease and average daily gain during the feeding period. Pulmonary lesions were evaluated at slaughter.

Results—Cattle shedding BCV from the nasal cavity and developing an antibody response against BCV were 1.6 times more likely to require treatment for respiratory tract disease than cattle that did not shed the virus or develop an immune response against BCV. Additionally, cattle that shed BCV from the nasal cavity were 2.2 times more likely to have pulmonary lesions at slaughter than cattle that did not shed the virus. The BCV shedding or seroconversion status did not affect average daily gain.

Conclusions and Clinical Relevance—Bovine coronavirus infects feedlot cattle and is associated with an increased risk for cattle developing respiratory tract disease and pulmonary lesions. Development of appropriate control measures could help reduce the incidence of respiratory tract disease. (Am J Vet Res 2000;61:1062–1066)

Full access
in American Journal of Veterinary Research