Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Kelley M. Varner x
- Refine by Access: All Content x
Abstract
OBJECTIVE
To assess effects of nitrogen and helium on efficacy of an alveolar recruitment maneuver (ARM) for improving pulmonary mechanics and oxygen exchange in anesthetized horses.
ANIMALS
6 healthy adult horses.
PROCEDURES
Horses were anesthetized twice in a randomized crossover study. Isoflurane-anesthetized horses in dorsal recumbency were ventilated with 30% oxygen and 70% nitrogen (treatment N) or heliox (30% oxygen and 70% helium; treatment H) as carrier gas. After 60 minutes, an ARM was performed. Optimal positive end-expiratory pressure was identified and maintained for 120 minutes. Throughout the experiment, arterial blood pressures, heart rate, peak inspiratory pressure, dynamic compliance (Cdyn), and Pao2 were measured. Variables were compared with baseline values and between treatments by use of an ANOVA.
RESULTS
The ARM resulted in significant increases in Pao2 and Cdyn and decreases in the alveolar-arterial gradient in the partial pressure of oxygen in all horses. After the ARM and during the subsequent 120-minute phase, mean values were significantly lower for treatment N than treatment H for Pao2 and Cdyn. Optimal positive end-expiratory pressure was consistently 15 cm H2O for treatment N, but it was 10 cm H2O (4 horses) and 15 cm H2O (2 horses) for treatment H.
CONCLUSIONS AND CLINICAL RELEVANCE
An ARM in anesthetized horses might be more efficacious in improving Pao2 and Cdyn when animals breathe helium instead of nitrogen as the inert gas.
Abstract
OBJECTIVE To compare sedative and mechanical hypoalgesic effects of sublingual administration of 2 doses of detomidine gel to donkeys.
DESIGN Randomized blinded controlled trial.
ANIMALS 6 healthy castrated male donkeys.
PROCEDURES In a crossover study design, donkeys received each of the following sublingual treatments 1 week apart in a randomly assigned order: 1 mL of molasses (D0) or detomidine hydrochloride gel at 20 μg/kg (9 μg/lb; D20) or 40 μg/kg (18 μg/lb; D40). Sedation score (SS), head height above the ground (HHAG), and mechanical nociceptive threshold (MNT) were assessed before and for 180 minutes after treatment. Areas under the effect change-versus-time curves (AUCs) from 0 to 30, 30 to 60, 60 to 120, and 120 to 180 minutes after administration were computed for SS, HHAG, and MNT and compared among treatments.
RESULTS D20 and D40 resulted in greater SS AUCs from 60 to 120 minutes and smaller HHAG AUCs from 30 through 180 minutes than did D0. The D40 resulted in smaller HHAG AUCs from 60 to 120 minutes than did D20. Compared with D0 values, MNT AUCs from 60 to 120 minutes were higher for D20, whereas MNT AUCs from 30 through 180 minutes were higher for D40.
CONCLUSIONS AND CLINICAL RELEVANCE D20 and D40 induced sedation and mechanical hypoalgesia in donkeys by > 30 minutes after administration, but only sedation was dose dependent. Sublingual administration of detomidine gel at 40 μg/kg may be useful for sedation of standing donkeys prior to potentially painful minor procedures.
Abstract
OBJECTIVE
To determine the time of onset and duration of action of distal paravertebral blocks (DPB) in dairy cattle using lidocaine and lidocaine plus xylazine (LX).
ANIMALS
10 healthy adult Holstein cows.
METHODS
Duration of anesthesia was significantly prolonged after DPB in cows treated with LX (251.6 ± 96.94 minutes) compared to lidocaine (105.8 ± 35.9 minutes; P = .01). Treatment with LX was associated with significantly lower average heart rate (56 ± 3 beats/min) compared to cows treated with lidocaine (59 ± 3 beats/min; P = .045). The LX treatment was associated with mild sedation but was not significant (P = .063).
RESULTS
Duration of anesthesia was significantly prolonged after DPB in cows treated with LX (251.6 ± 96.94 minutes) compared to lidocaine (105.8 ± 35.9 minutes; P = .01). Treatment with LX was associated with significantly lower average heart rate (56 ± 3 beats/min) compared to cows treated with lidocaine (59 ± 3 beats/min; P = .045). The LX treatment was associated with mild sedation but was not significant (P = .063).
CLINICAL RELEVANCE
The addition of xylazine to a lidocaine DPB provides a longer duration of anesthesia, is inexpensive and practical, and can be implemented with ease.