Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Kathleen A. Carpenter x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine whether breed, age, sex, or reproductive status (ie, neutered versus sexually intact) was associated with the apparent increase in prevalence of calcium oxalate (CaOx) uroliths and the decrease in prevalence of magnesium ammonium phosphate (MAP) uroliths in cats over time.

Design—Case-control study.

Animals—Case cats consisted of cats with CaOx (n = 7,895) or MAP (7,334) uroliths evaluated at the Minnesota Urolith Center between 1981 and 1997. Control cats consisted of cats without urinary tract disease admitted to veterinary teaching hospitals in the United States and Canada during the same period (150,482).

Procedure—Univariate and multivariate logistic regression were performed.

Results—British Shorthair, Exotic Shorthair, Foreign Shorthair, Havana Brown, Himalayan, Persian, Ragdoll, and Scottish Fold cats had an increased risk of developing CaOx uroliths, as did male cats and neutered cats. Chartreux, domestic shorthair, Foreign Shorthair, Himalayan, Oriental Shorthair, and Ragdoll cats had an increased risk of developing MAP uroliths, as did female cats and neutered cats. Cats with CaOx uroliths were significantly older than cats with MAP uroliths.

Conclusions and Clinical Relevance—Results suggest that changes in breed, age, sex, or reproductive status did not contribute to the apparent reciprocal relationship between prevalences of CaOx and MAP uroliths in cats during a 17-year period. However, cats of particular breeds, ages, sex, and reproductive status had an increased risk of developing CaOx and MAP uroliths. (J Am Vet Med Assoc 2000;217:520–525)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine effects of storage temperature and time on pH and specific gravity of and number and size of crystals in urine samples from dogs and cats.

Design—Randomized complete block design.

Animals—31 dogs and 8 cats.

Procedure—Aliquots of each urine sample were analyzed within 60 minutes of collection or after storage at room or refrigeration temperatures (20 vs 6°C [68 vs 43°F]) for 6 or 24 hours.

Results—Crystals formed in samples from 11 of 39 (28%) animals. Calcium oxalate (CaOx) crystals formed in vitro in samples from 1 cat and 8 dogs. Magnesium ammonium phosphate (MAP) crystals formed in vitro in samples from 2 dogs. Compared with aliquots stored at room temperature, refrigeration increased the number and size of crystals that formed in vitro; however, the increase in number and size of MAP crystals in stored urine samples was not significant. Increased storage time and decreased storage temperature were associated with a significant increase in number of CaOx crystals formed. Greater numbers of crystals formed in urine aliquots stored for 24 hours than in aliquots stored for 6 hours. Storage time and temperature did not have a significant effect on pH or specific gravity.

Conclusions and Clinical Relevance—Urine samples should be analyzed within 60 minutes of collection to minimize temperature- and time-dependent effects on in vitro crystal formation. Presence of crystals observed in stored samples should be validated by reevaluation of fresh urine. (J Am Vet Med Assoc 2003;222:176–179)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To test the hypothesis that breed, age, sex, body condition, and environment are risk factors for development of calcium oxalate uroliths in dogs.

Design—Case-control study.

Animals—1,074 dogs that formed calcium oxalate uroliths and 1,724 control dogs that did not have uroliths.

Procedure—A validated multiple-choice questionnaire was designed to collect information from veterinarians and owners within 1 year of the date of urolith detection concerning signalment and environment of the dogs. Univariate and multivariate analyses were performed to calculate odds ratios to assess whether breed, age, sex, body condition, and environment were risk factors for calcium oxalate urolith formation.

Results—Middle-aged (8- to 12-year-old) castrated male dogs had increased risk for formation of calcium oxalate uroliths. Urolith formation was also associated with increasing age. Dogs of certain breeds, including Miniature and Standard Schnauzer, Lhasa Apso, Yorkshire Terrier, Bichon Frise, Shih Tzu, and Miniature and Toy Poodle, had increased risk for developing calcium oxalate uroliths. Overweight dogs also had increased risk.

Conclusions and Clinical Relevance—Knowledge of patient and environmental risk factors for development of calcium oxalate uroliths may facilitate development of surveillance strategies that result in earlier detection of this disease. Modification of environmental factors and body weight may minimize calcium oxalate urolith formation and recurrence. (J Am Vet Med Assoc 2000;217:515–519)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To identify dietary factors associated with the increase in occurrence of calcium oxalate (CaOx) uroliths and the decrease in occurrence of magnesium ammonium phosphate (MAP) uroliths in cats.

Design—Case-control study.

Animals—173 cats with CaOx uroliths, 290 cats with MAP uroliths, and 827 cats without any urinary tract diseases.

Procedure—Univariate and multivariate logistic regression were performed.

Results—Cats fed diets low in sodium or potassium or formulated to maximize urine acidity had an increased risk of developing CaOx uroliths but a decreased risk of developing MAP uroliths. Additionally, compared with the lowest contents, diets with the highest moisture or protein contents and with moderate magnesium, phosphorus, or calcium contents were associated with decreased risk of CaOx urolith formation. In contrast, diets with moderate fat or carbohydrate contents were associated with increased risk of CaOx urolith formation. Diets with the highest magnesium, phosphorus, calcium, chloride, or fiber contents and moderate protein content were associated with increased risk of MAP urolith formation. On the other hand, diets with the highest fat content were associated with decreased risk of MAP urolith formation.

Conclusions and Clinical Relevance—Results suggest that diets formulated to contain higher protein, sodium, potassium, moisture, calcium, phosphorus, and magnesium contents and with decreased urine acidifying potential may minimize formation of CaOx uroliths in cats. Diets formulated to contain higher fat content and lower protein and potassium contents and with increased urine acidifying potential may minimize formation of MAP uroliths. (J Am Vet Med Assoc 2001;219:1228–1237)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To identify factors in dry diets associated with the occurrence of calcium oxalate (CaOx) uroliths in dogs.

Animals—600 dogs with CaOx uroliths and 898 dogs without urinary tract diseases.

Procedure—Univariate and multivariate logistic regression were performed.

Results—Compared with diets with the highest concentrations of sodium, dry diets with the lowest concentrations of sodium, phosphorus, calcium, chloride, protein, magnesium, or potassium were linearly associated with increased risk of CaOx urolith formation. Significant nonlinear associations between increased occurrence of CaOx uroliths and urine acidifying potential and low moisture content were observed. Significant nonlinear associations between decreased occurrence of CaOx uroliths and carbohydrate and fiber contents were observed. A significant association between the occurrence of CaOx uroliths and dietary fat was not observed.

Conclusions and Clinical Relevance—Results suggest that dry diets formulated to contain high concentrations of protein, calcium, phosphorus, magnesium, sodium, potassium, and chloride may minimize formation of CaOx uroliths. In addition, comparison of risk and protective factors of various diet ingredients fed to dogs with CaOx uroliths suggests that although similar findings were observed in canned and dry formulations, in general, greater risk is associated with dry formulations. However, before these hypotheses about dietary modifications are adopted by food manufacturers, they must be investigated by use of appropriately designed clinical studies of dogs with CaOx urolithiasis. (Am J Vet Res 2002;63:330–337)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To identify dietary factors in commercially available canned foods associated with the development of calcium oxalate (CaOx) uroliths in dogs.

Animals—117 dogs with CaOx uroliths and 174 dogs without urinary tract disease.

Procedure—Case dogs were those that developed CaOx uroliths submitted to the Minnesota Urolith Center for quantitative analysis between 1990 and 1992 while fed a commercially available canned diet. Control dogs were those without urinary tract disease evaluated at the same veterinary hospital just prior to or immediately after each case dog. A content-validated multiple-choice questionnaire was mailed to each owner of case and control dogs with the permission of the primary care veterinarian. Univariate and multivariate logistic regressions for each dietary component were performed to test the hypothesis that a given factor was associated with CaOx urolith formation.

Results—Canned foods with the highest amount of protein, fat, calcium, phosphorus, magnesium, sodium, potassium, chloride, or moisture were associated with a decreased risk of CaOx urolith formation, compared with diets with the lowest amounts. In contrast, canned diets with the highest amount of carbohydrate were associated with an increased risk of CaOx urolith formation.

Conclusions and Clinical Relevance—Feeding canned diets formulated to contain high amounts of protein, fat, calcium, phosphorus, magnesium, sodium, potassium, chloride, and moisture and a low amount of carbohydrate may minimize the risk of CaOx urolith formation in dogs. (Am J Vet Res 2002;63:163–169)

Full access
in American Journal of Veterinary Research