Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: Karsten E. Schober x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the influence of age, body weight (BW), heart rate (HR), sex, and left ventricular shortening fraction (LVSF) on transmitral and pulmonary venous flow in clinically normal dogs.

Animals—92 client-owned dogs 3 months to 19 years old.

Procedure—Transthoracic Doppler echocardiography recordings of transmitral flow and pulmonary venous flow were obtained in conscious unsedated dogs. Influence of age, BW, HR, sex, and LVSF on diastolic variables was assessed, using statistical methods such as ANOVA on ranks and univariate and multivariate forward stepwise linear regression analyses.

Results—Age significantly influenced isovolumic relaxation time (IVRT; r = 0.56), ratio between peak velocity of the early diastolic mitral flow wave-to-peak velocity of late diastolic mitral flow wave (E:A; r = –0.44), deceleration time of early diastolic mitral flow (DTE; r = 0.26), and peak velocity of atrial reversal pulmonary venous flow wave (AR-wave; r= 0.37). Significant changes of mitral inflow and pulmonary venous flow variables were evident only in dogs > 6 and > 10 years old, respectively. Body weight significantly influenced DTE ( r = 0.63), late diastolic flow duration ( r= 0.60), and AR duration ( r= 0.47), whereas HR significantly affected DTE ( r = –0.34), IVRT ( r= –0.33), and peak velocity of AR ( r= 0.24). Sex or LVSF (range 22 to 48%) did not influence any echocardiographic variables.

Conclusions and Clinical Relevance—Age, BW, and HR are important factors that affect filling of the left atrium and left ventricle in clinically normal dogs. (Am J Vet Res 2001;62:1447–1454)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare echocardiographic indices of myocardial strain with invasive measurements of left ventricular (LV) systolic function in anesthetized healthy dogs.

Animals—7 healthy dogs.

Procedures—In each anesthetized dog, preload and inotropic conditions were manipulated sequentially to induce 6 hemodynamic states; in each state, longitudinal, radial, and global strains and strain rate (SR), derived via 2-D speckle-tracking echocardiography, were evaluated along with conventional echocardiographic indices of LV function and maximum rate of rise (first derivative) of LV systolic pressure (LV+dp/dtmax). Catheter-derived and echocardiographic data were acquired simultaneously. Partial and semipartial correlation coefficients were calculated to determine the correlation between LV+dp/dtmax and each echocardiographic variable. Global longitudinal strain was compared with conventional echocardiographic indices via partial correlation analysis.

Results—All myocardial segments could be analyzed in all dogs. Significant semipartial correlations were identified between conventional echocardiographic strain indices and LV+dp/dtmax. Correlation coefficients for longitudinal deformation and global strain, segmental longitudinal strain, and segmental SR were −0.773, −0.562 to −0.786, and −0.777 to −0.875, respectively. Correlation coefficients for radial segments and strain or SR were 0.654 to 0.811 and 0.748 to 0.775, respectively. Correlation coefficients for traditional echocardiographic indices and LV+dp/dtmax (−0.586 to 0.821) and semipartial correlation coefficients for global strain and echocardiographic indices of LV systolic function (−0.656 [shortening fraction], −0.726 [shortening area], and −0.744 [ejection fraction]) were also significant.

Conclusions and Clinical Relevance—Results indicated that LV systolic function can be predicted by myocardial strain and SR derived via 2-D speckle-tracking echocardiographic analysis in anesthetized healthy dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare Doppler echocardiographic variables of left ventricular (LV) function with those obtained invasively via cardiac catheterization under a range of hemodynamic conditions.

Animals—7 healthy anesthetized cats (1 to 3 years of age).

Procedure—Cats were anesthetized and instrumented to measure the time constant of isovolumic relaxation (tau []), LV end-diastolic pressure (LVEDP), peak negative and positive rate of change of LV pressure, arterial blood pressure, and cardiac output. Echocardiographic variables of diastolic function (isovolumic relaxation time [IVRT], early LV flow propagation velocity [Vp], transmitral and pulmonary venous flow velocity indices, and LV tissue Doppler imaging indices) were measured simultaneously over a range of hemodynamic states induced by treatments with esmolol, dobutamine, cilobradine, and volume loading. Correlation between invasive and noninvasive measures of LV filling was determined by univariate and multivariate regression analyses.

Results—Significant correlations were found between and IVRT, peak Vp, peak late transmitral flow velocity, and peak systolic pulmonary venous flow velocity. A significant correlation was found between LVEDP and early diastolic transmitral flow velocity (peak E) and the ratio of peak E to peak Vp, but not between LVEDP and peak Vp.

Conclusion and Clinical Relevance—IVRT and Vp can be used as noninvasive indices of LV relaxation; Vp was independent of preload and heart rate in this study. The E:Vp ratio may be useful as an indicator of LV filling pressure. (Am J Vet Res 2003;64:93–103)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To assess the feasibility, describe the techniques, and determine the reliability of transthoracic echocardiography for characterization of left atrial (LA) size and LA mechanical function in horses.

Animals—6 healthy adult horses.

Procedures—Repeated echocardiographic examinations were performed independently by 2 observers in standing, unsedated horses by use of 2-dimensional echocardiography, pulsed-wave flow Doppler, and tissue Doppler imaging (TDI) techniques. Test reliability was determined by estimating measurement variability, within-day interobserver variability, and between-day inter- and intraobserver variability of all echocardiographic variables. Variability was expressed as the coefficient of variation (CV) and the absolute value below which the difference between 2 measurements will lie with 95% probability.

Results—Most echocardiographic variables of LA size had low overall variability (CV, < 15%). Among the 2-dimensional indices of LA mechanical function, area-based and volume-based ejection phase indices had moderate between-day variability (CV usually < 25%). Transmitral Doppler flow indices were characterized by low to high between-day variability (CV, 6% to 35%). The TDI wall motion velocities had high between-day variability (CV, > 25%), whereas most TDI-derived time intervals had low variability (CV, < 15%).

Conclusions and Clinical Relevance—LA size and mechanical function can be reliably assessed in standing, unsedated horses by use of 2-dimensional echocardiography, transmitral blood flow velocity profiles, and analyses of LA wall motion by use of TDI. These results may provide useful recommendations for echocardiographic assessment of LA size and function in horses.

Full access
in American Journal of Veterinary Research

Abstract

Case Description—4 dogs with acquired pulmonary artery stenosis (PAS) were examined for various clinical signs. One was a mixed-breed dog with congenital valvular PAS that subsequently developed peripheral PAS, one was a Golden Retriever with pulmonary valve fibrosarcoma, one was a Pembroke Welsh Corgi in which the left pulmonary artery had inadvertently been ligated during surgery for correction of patent ductus arteriosus, and one was a Boston Terrier with a heart-base mass compressing the pulmonary arteries.

Clinical Findings—All 4 dogs were evaluated with 2-dimensional and Doppler echocardiography to characterize the nature and severity of the stenoses; other diagnostic tests were also performed.

Treatment and Outcome—The mixed-breed dog with valvular and peripheral PAS was euthanized, surgical resection of the pulmonic valve mass was performed in the Golden Retriever, corrective surgery was performed on the Pembroke Welsh Corgi with left pulmonary artery ligation, and the Boston Terrier with the heart-base mass was managed medically.

Clinical Relevance—Acquired PAS in dogs may manifest as a clinically silent heart murmur, syncope, or right-sided heart failure. The diagnosis is made on the basis of imaging findings, particularly results of 2-dimensional and Doppler echocardiography. Treatment may include surgical, interventional, or medical modalities and is targeted at resolving the inciting cause.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine whether serum concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) are increased in dogs with gastric dilatationvolvulus (GDV) and whether concentrations correlate with severity of ECG abnormalities or outcome.

Design—Prospective case series.

Animals—85 dogs with GDV.

Procedure—Serum cTnI and cTnT concentrations were measured 12 to 24, 48, 72, and 96 hours after surgery. Dogs were grouped on the basis of severity of ECG abnormalities and outcome.

Results—cTnI and cTnT were detected in serum from 74 (87%) and 43 (51%) dogs, respectively. Concentrations were significantly different among groups when dogs were grouped on the basis of severity of ECG abnormalities (none or mild vs moderate vs severe). Dogs that died (n = 16) had significantly higher serum cTnI (24.9 ng/ml) and cTnT (0.18 ng/ml) concentrations than did dogs that survived (2.05 and < 0.01 ng/ml, respectively). Myocardial cell injury was confirmed at necropsy in 4 dogs with high serum cardiac troponin concentrations.

Conclusions and Clinical Relevance—Results indicate that concentrations of cTnI and cTnT suggestive of myocardial cell injury can commonly be found in serum from dogs with GDV and that serum cardiac troponin concentrations are associated with severity of ECG abnormalities and outcome. (J Am Vet Med Assoc 2002;221:381–388)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate the accuracy of a commercial ultrasonographic cardiac output (CO) monitoring system (UCOMS) in anesthetized Beagles as assessed by comparison with thermodilution CO (TDCO).

Animals—8 healthy anesthetized Beagles.

Procedures—Simultaneous UCOMS and TDCO measurements of CO were obtained during 4 hemodynamic states: baseline anesthesia (0.5% to 1.5% isoflurane), a higher depth of anesthesia (2% to 3.5% isoflurane) to yield a ≥ 15% reduction in systolic arterial blood pressure, IV infusion of colloidal solution to a mean right atrial pressure of ≥ 15 mm Hg, and IV infusion of dobutamine at 5 μg/kg/min. Measurements were obtained at 2 probe positions: the subxiphoid region and the right thoracic inlet. Correlation and agreement of results between methods were determined via linear regression analysis and Bland-Altman plots.

Results—A significant positive correlation was detected between UCOMS andTDCO measurements obtained at the subxiphoid (R = 0.86) and thoracic inlet (R = 0.83) positions. Bland-Altman plots revealed minimal bias between methods (bias ± SD, −0.03 ± 0.73 L/min and −0.20 ± 0.80 L/min for subxiphoid and thoracic inlet measurements, respectively). However, the percentage error associated with UCOMS measurements made at the 2 positions was > 45%.

Conclusions and Clinical Relevance—When compared with the results of TDCO, CO measured with the UCOMS exceeded commonly accepted limits of error in healthy dogs. The UCOMS was, however, able to track changes in CO across hemodynamic states. Additional research is needed to assess the usefulness of the UCOMS for monitoring CO in critically ill dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To identify Doppler echocardiographic (DE) variables that correlate with left ventricular filling pressure (LVFP).

Animals—7 healthy dogs (1 to 3 years old).

Procedures—Dogs were anesthetized and instrumented to measure left atrial pressure (LAP), left ventricular pressures, and cardiac output. Nine DE variables of LVFP derived from diastolic time intervals, transmitral and pulmonary venous flow, and tissue Doppler images were measured over a range of hemodynamic states induced by volume loading and right atrial pacing. Associations between simultaneous invasive measures of LVFP and DE measures of LVFP were determined by use of regression analysis. Receiver operating characteristic analysis was used to predict increases in mean LAP on the basis of DE variables.

Results—Mean LAP was correlated with several DE variables: the ratio between peak velocity during early diastolic transmitral flow and left ventricular isovolumic relaxation time (peak E:IVRT) during sinus rhythm and during right atrial pacing, IVRT, the ratio between late diastolic transmitral flow velocity and pulmonary venous flow duration, and the interval between onset of early diastolic mitral annulus motion and onset of early diastolic transmitral flow. Cutoff values of 2.20 and 2.17, for peak E:IVRT in dogs with sinus rhythm and atrial pacing predicted increases in mean LAP (≥ 15 mm Hg) with sensitivities of 90% and 100% and specificities of 92% and 100%, respectively.

Conclusions and Clinical Relevance—Doppler echocardiography can be used to predict an increase in LVFP in healthy anesthetized dogs subjected to volume loading.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of treatment on respiratory rate, serum natriuretic peptide concentrations, and Doppler echocardiographic indices of left ventricular filling pressure in dogs with congestive heart failure (CHF) secondary to degenerative mitral valve disease (MVD) and dilated cardiomyopathy (DCM).

Design—Prospective cohort study.

Animals—63 client-owned dogs.

Procedures—Physical examination, thoracic radiography, analysis of natriuretic peptide concentrations, and Doppler echocardiography were performed twice, at baseline (examination 1) and 5 to 14 days later (examination 2). Home monitoring of respiratory rate was performed by the owners between examinations.

Results—In dogs with MVD, resolution of CHF was associated with a decrease in respiratory rate, serum N-terminal probrain natriuretic peptide (NT-proBNP) concentration, and diastolic functional class and an increase of the ratio of peak velocity of early diastolic transmitral flow to peak velocity of early diastolic lateral mitral annulus motion (E:Ea Lat). In dogs with DCM, resolution of CHF was associated with a decrease in respiratory rate and serum NT-proBNP concentration and significant changes in 7 Doppler echocardiographic variables, including a decrease of E:Ea Lat and the ratio of peak velocity of early diastolic transmitral flow to isovolumic relaxation time. Only respiratory rate predicted the presence of CHF at examination 2 with high accuracy.

Conclusions and Clinical Relevance—Resolution of CHF was associated with predictable changes in respiratory rate, serum NT-proBNP concentration, and selected Doppler echocardiographic variables in dogs with DCM and MVD. Home monitoring of respiratory rate was simple and was the most useful in the assessment of successful treatment of CHF.

Restricted access
in Journal of the American Veterinary Medical Association