Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Kamil Tomsa x
  • Refine by Access: All Content x
Clear All Modify Search

Objective

To determine the effect of hyperthyroidism on serum fructosamine concentration in cats.

Design

Cohort study.

Animals

22 cats with overt hyperthyroidism.

Procedure

Hyperthyroidism was diagnosed on the basis of clinical signs, detection of a palpable thyroid gland, and high total serum thyroxine (T4) concentrations. Hyperthyroid cats with abnormal serum albumin, total protein, and glucose concentrations were excluded from the study. Samples for determination of serum fructosamine concentration were obtained prior to initiating treatment. Results were compared with fructosamine concentrations in healthy cats, cats in which diabetes had recently been diagnosed, and cats with hypoproteinemia. In 6 cats, follow-up measurements were obtained 2 and 6 weeks after initiating treatment with carbimazole.

Results

Serum fructosamine concentrations ranged from 154 to 267 μmol/L (median, 198 μmol/L) and were significantly lower than values in healthy cats. Eleven (50%) of the hyperthyroid cats had serum fructosamine concentrations less than the reference range. Serum fructosamine concentrations in hyperthyroid, normoproteinemic cats did not differ from values in hypoproteinemic cats. During treatment, an increase in serum fructosamine concentration was detected.

Conclusions and Clinical Relevance

In hyperthyroid cats, concentration of serum fructosamine may be low because of accelerated protein turnover, independent of blood glucose concentration. Serum fructosamine concentrations should not be evaluated in cats with overt hyperthyroidism and diabetes mellitus. Additionally, concentration of serum fructosamine in hyperthyroid cats should not be used to differentiate between diabetes mellitus and transitory stress-related hyperglycemia. (J Am Vet Med Assoc 1999;215:1297–1300)

Free access
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate whether determination of parathyroid gland size by use of ultrasonography is helpful in differentiating acute renal failure (ARF) from chronic renal failure (CRF) in dogs.

Design—Prospective study.

Animals—20 dogs with renal failure in which serum creatinine concentration was at least 5 times the upper reference limit. Seven dogs had ARF, and 13 dogs had CRF. Twenty-three healthy dogs were used as controls.

Procedure—Dogs were positioned in dorsal recumbency for ultrasonographic examination of the ventral portion of the neck, A 10-MHz linear-array high-resolution transducer was used. The size of the parathyroid gland was determined by measuring the maximal length of the gland on the screen when it was imaged in longitudinal section. For comparison among groups, the longest linear dimension of any of the parathyroid glands of each dog was used.

Results—Size of the parathyroid glands in the control dogs varied from 2.0 to 4.6 mm (median, 3.3 mm). In the dogs with ARF, gland size ranged from 2.4 to 4.0 mm (median, 2.7), which was not significantly different from controls. In dogs with CRF, the glands were more distinctly demarcated from the surrounding thyroid tissue, than those of controls and dogs with ARF. Sizes ranged from 3.9 to 8.1 mm (median, 5.7 mm), which was significantly larger, compared with controls and dogs with ARF.

Conclusion and Clinical Relevance—In dogs with severe azotemia, ultrasonographic examination of the parathyroid glands was helpful in differentiating ARF from CRF. Size of the parathyroid glands appeared to be related to body weight. (J Am Vet Med Assoc 2000;217:1849–1852)

Full access
in Journal of the American Veterinary Medical Association