Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Joshua B. Daniels x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To estimate the prevalence of extended-spectrum cephalosporin-, carbapenem-, and fluoroquinolone-resistant bacteria of the family Enterobacteriaceae in the feces of hospitalized horses and on hospital surfaces.

SAMPLE

Fecal and environmental samples were collected from The Ohio State University Galbreath Equine Center (OSUGEC) and a private referral equine hospital in Kentucky (KYEH). Feces were sampled within 24 hours after hospital admission and after 48 hours and 3 to 7 days of hospitalization.

PROCEDURES

Fecal and environmental samples were enriched, and then selective media were inoculated to support growth of Enterobacteriaceae bacteria that expressed resistance phenotypes to extended-spectrum cephalosporins, carbapenems, and fluoroquinolones.

RESULTS

358 fecal samples were obtained from 143 horses. More samples yielded growth of Enterobacteriaceae bacteria that expressed resistance phenotypes (AmpC β-lactamase, OR = 4.2; extended-spectrum beta-lactamase, OR = 3.2; and fluoroquinolone resistance, OR = 4.0) after 48 hours of hospitalization, versus within 24 hours of hospital admission. Horses hospitalized at KYEH were at greater odds of having fluoroquinolone-resistant bacteria (OR = 2.2). At OSUGEC, 82%, 64%, 0%, and 55% of 164 surfaces had Enterobacteriaceae bacteria with AmpC β-lactamase phenotype, extended-spectrum beta-lactamase phenotype, resistance to carbapenem, and resistance to fluoroquinolones, respectively; prevalences at KYEH were similarly distributed (52%, 32%, 1%, and 35% of 315 surfaces).

CONCLUSIONS AND CLINICAL RELEVANCE

Results indicated that antimicrobial-resistant Enterobacteriaceae may be isolated from the feces of hospitalized horses and from the hospital environment. Hospitalization may lead to increased fecal carriage of clinically important antimicrobial-resistance genes.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To measure effects of oral Akkermansia muciniphila administration on systemic markers of gastrointestinal permeability and epithelial damage following antimicrobial administration in dogs.

ANIMALS 8 healthy adult dogs.

PROCEDURES Dogs were randomly assigned to receive either A muciniphila (109 cells/kg; n = 4) or vehicle (PBS solution; 4) for 6 days following metronidazole administration (12.5 mg/kg, PO, q 12 h for 7 d). After a 20-day washout period, the same dogs received the alternate treatment. After another washout period, experiments were repeated with amoxicillin-clavulanate (13.5 mg/kg, PO, q 12 h) instead of metronidazole. Fecal consistency was scored, a quantitative real-time PCR assay for A muciniphila in feces was performed, and plasma concentrations of cytokeratin-18, lipopolysaccharide, and glucagon-like peptides were measured by ELISA before (T0) and after (T1) antimicrobial administration and after administration of A muciniphila or vehicle (T2).

RESULTS A muciniphila was detected in feces in 7 of 8 dogs after A muciniphila treatment at T2 (3/4 experiments) but not at T0 or T1. After metronidazole administration, mean change in plasma cytokeratin-18 concentration from T1 to T2 was significantly lower with vehicle than with A muciniphila treatment (−0.27 vs 2.4 ng/mL). Mean cytokeratin-18 concentration was lower at T1 than at T0 with amoxicillin-clavulanate. No other significant biomarker concentration changes were detected. Probiotic administration was not associated with changes in fecal scores. No adverse effects were attributed to A muciniphila treatment.

CONCLUSIONS AND CLINICAL RELEVANCE Detection of A muciniphila in feces suggested successful gastrointestinal transit following oral supplementation in dogs. Plasma cytokeratin-18 alterations suggested an effect on gastrointestinal epithelium. Further study is needed to investigate effects in dogs with naturally occurring gastrointestinal disease.

Full access
in American Journal of Veterinary Research

Abstract

Widespread use of antimicrobials in human and veterinary medicine drives the emergence and dissemination of resistant bacteria in human, animal, and environmental reservoirs. The AVMA and FDA Center for Veterinary Medicine have both taken public positions emphasizing the importance of incorporating antimicrobial stewardship in veterinary clinical settings; however, a model for implementing a comprehensive antimicrobial stewardship program in veterinary practice is not readily available.

In 2015, The Ohio State University College of Veterinary Medicine began developing a veterinary antimicrobial stewardship program modeled on existing programs in human health-care institutions and the 7 core elements of a successful hospital antimicrobial stewardship program, as defined by the CDC. The program includes comprehensive antimicrobial use guidelines, active environmental surveillance, and enhanced infection control procedures in The Ohio State University Veterinary Medical Center, along with routine monitoring and reporting of antimicrobial prescribing practices and antimicrobial susceptibility patterns of common pathogens isolated from patients and the hospital environment. Finally, programs have been developed to educate clinicians, staff, and students on antimicrobial resistance and appropriate antimicrobial prescribing practices.

The antimicrobial stewardship program has been designed to help clinicians and students confidently make judicious antimicrobial use decisions and provide them with actionable steps that can help them act as strong stewards while providing the best care for their patients. This report describes our program and the process involved in developing it, with the intent that the program could serve as a potential model for other veterinary medical institutions.

Restricted access
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association