Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Joseph C. Kawalek x
  • Refine by Access: All Content x
Clear All Modify Search


Drug-metabolizing enzyme activities were measured in livers from calves fed commercial milk replacer (nonfunctioning rumen [veal]), and those fed milk replacer supplemented with whole grain and hay from the first week of age (functioning rumen [ruminating calves ]). After birth, cytochrome P450 and its nadph-dependent reductase activities remained unchanged in veal calves; in ruminating calves they increased almost 50%. Cytochrome P450- mediated reactions, such as aniline hydroxylase activity, tripled in ruminating calves, but remained unchanged in veal calves. In both groups of calves, coumarin hydroxylase and 7- ethoxycoumarin 0 -deethylase activities increased after birth, but maturation rates and activity values in ruminating calves were considerably greater than those of veal calves. The aminopyrine N-demethylase activity for veal calves was equal to that of calves with functioning rumen. Uridine diphosphoglucuronic acid glucuronyl transferase and glutathione - S-transferase activities also were higher in calves with functioning rumen than in veal calves. This increased activity in calves with functioning rumen probably represents a response to environmental exposure to xenobiotics. Compared with rumen-functional calves, bob veal (0 to 3 weeks old) and fancy veal (15 to 19 weeks old) calves fed commercial milk replacer have a significantly (P = 0.05) diminished capacity for metabolizing drugs and other xenobiotics. From a regulatory perspective, the variance in drug-metabolizing enzyme activities within these different market classes of calves suggests that specific studies designed to determine drug residue-depletion times in veal calves may be needed.

Free access
in American Journal of Veterinary Research


Objective—To investigate effects of bacteria-mediated inflammation on hepatic drug metabolizing enzymes (DMEs) in swine via a lipopolysaccharide (LPS) challenge technique.

Animals—22 Poland China–Landrace crossbred barrows.

Procedures—In experiment 1, 10 market-weight swine were treated with LPS (20 μg/kg, IV [n = 5 swine]) or sham-injected (5) 24 hours before slaughter. In experiment 2, 12 growing and finishing swine were treated with LPS at 2 or 20 μg/kg, IV (n = 3 swine/age group/treatment) 24 hours before slaughter. Hepatic DMEs, cytochrome P450 (CYP) isoforms, and CYP-mediated reactions were measured.

Results—In experiment 1, LPS administered at 20 μg/kg decreased most hepatic DME components and inhibited enzymatic activities. In experiment 2, both doses reduced protein content in subcellular fractions and inhibited some DME- and CYP-mediated activities. In growing and finishing swine, CYP2A and CYP2B isoforms were not detected after treatment with LPS; the CYP1A2 isoform was eliminated in growing but not in finishing swine. Lipopolysaccharide also reduced CYP2D6 content in growing and finishing swine but increased CYP2E content. Lipopolysaccharide had no effect on swine CYP2C11, CYP2C13, or CYP3A content. The CYP2B-mediated 7-pentoxyresorufin O-dealkylase activity in growing and finishing swine was totally eliminated, and 7-ethoxyresorufin (indicating CYP1A activity) and aniline (mediated by CYP2E) metabolism was decreased.

Conclusions and Clinical Relevance—Effect of LPS treatment on swine CYPs appeared to be isoform specific; age-related metabolic status of the swine and the LPS dose modified this effect. Lipopolysaccharide-induced inflammation may affect metabolism of drugs and xenobiotics in swine.

Full access
in American Journal of Veterinary Research


Objective—To determine the effect of oral administration of low doses of pentobarbital on cytochrome P450 (CYP) isoforms and CYP-mediated reactions in immature Beagles.

Animals—42 immature (12-week-old) Beagles.

Procedure—Dogs were grouped and treated orally as follows for 8 weeks: low-dose pentobarbital (50 µg/d; 4 males, 4 females), mid-dose pentobarbital (150 µg/d; 4 males, 4 females), high-dose pentobarbital (500 µg/d; 4 males, 4 females), positive-pentobarbital control (10 mg/kg/d; 2 males, 2 females), positivephenobarbital control (10 mg/kg/d; 2 males, 2 females), and negative control (saline [0.9% NaCl] solution; 5 males, 5 females). Serum biochemical and hematologic values were monitored. On necropsy examination, organ weights were determined, and histologic evaluation of tissue sections of liver, kidney, small intestine, testes, epididymis, and ovaries was performed. Hepatic and intestinal drug-metabolizing enzyme activities were measured, and relative amounts of CYP isoforms were determined by western blot analysis.

Results—The amount of a hepatic CYP2A-related isoform in dogs from the high-dose pentobarbital treatment group was twice that of dogs from the negative control group. CYP2C was not detectable in small intestinal mucosa of dogs from the negative control group; measurable amounts of CYP2C were found in dogs from the various (low-, mid-, and high-dose) pentobarbital treatment groups and from positive-pentobarbital and positive phenobarbital control groups. Several CYP-mediated reactions increased in a dosedependent manner. The lowest calculated effective dose of pentobarbital ranged from 200 to 450 µg/d.

Conclusions and Clinical Relevance—Several CYP isoforms and their associated reactions were induced in dogs by oral administration of low amounts of pentobarbital. (Am J Vet Res 2003;64:1167–1175)

Full access
in American Journal of Veterinary Research