Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: John E. Madigan x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine signalment, history, clinical signs, duration, seasonality, and response to various treatments reported by owners for headshaking in horses.

Design—Owner survey.

Animals—109 horses with headshaking.

Procedure—Owners of affected horses completed a survey questionnaire.

Results—78 affected horses were geldings, 29 were mares, and 2 were stallions. Mean age of onset was 9 years. Headshaking in 64 horses had a seasonal component, and for most horses, headshaking began in spring and ceased in late summer or fall. The most common clinical signs were shaking the head in a vertical plane, acting like an insect was flying up the nostril, snorting excessively, rubbing the muzzle on objects, having an anxious expression while headshaking, worsening of clinical signs with exposure to sunlight, and improvement of clinical signs at night. Treatment with antihistamines, nonsteroidal antiinflammatory drugs, corticosteroids, antimicrobials, fly control, chiropractic, and acupuncture had limited success. Sixty-one horses had been treated with cyproheptadine; 43 had moderate to substantial improvement.

Conclusions and Clinical Relevance—Headshaking may have many causes. A large subset of horses have similar clinical signs including shaking the head in a vertical plane, acting as if an insect were flying up the nostrils, and rubbing the muzzle on objects. Seasonality and worsening of clinical signs with exposure to light are also common features of this syndrome. Geldings and Thoroughbreds appear to be overrepresented. Cyproheptadine treatment was beneficial in more than two thirds of treated horses. (J Am Vet Med Assoc 2001;219:334–337)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To assess spatial and temporal patterns of seroprevalence among dogs in California to the causative agent of granulocytic ehrlichiosis (GE).

Sample Population—Sera of 1,082 clinically normal dogs from 54 of 59 counties in California in 1997 to 1998.

Procedure—Serum-specific IgG reactivity to Ehrlichia equi was assessed by use of an immunofluorescent antibody assay, using E equi-infected horse neutrophils as substrate. Data were analyzed, using a geographic information system. Spatial analysis of seroprevalence included first order Bayesian analysis of seroprevalence and second order analysis of clustering by K-function and Cuzick-Edwards tests. Monthly seroprevalence among dogs was examined by use of regression on monthly densities of Ixodes pacificus adults and nymphs .

Results—Seroprevalence among dogs to E equi was 8.68%. Data were seasonally bimodal with highest prevalence in winter (when adult ticks were abundant) and a secondary peak in late spring (corresponding to nymphal ticks). Humboldt County had the highest seroprevalence (47.3%), and other northern coast range counties had seroprevalence from 15 to 30%.

Conclusion and Clinical Relevance—The patchy distribution of exposure to Ehrlichia organisms is a subset of the distribution of the tick vector. This may reflect enzootic cycles or climatic or historical factors that limited the range of the disease. Dogs, horses, and humans from north coast range counties in California are at increased risk of GE. These data provide a background for assessing risk of infection in horses and dogs, depending on geographic location. Dogs may be sentinels for assessing risk of GE in humans. (Am J Vet Res 2001;62:1599–1605)

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To describe an animal health database used to facilitate effective disaster response and retrospective analysis of data concerning animals other than cats and dogs affected by the 2018 California Camp Fire.

ANIMALS

Veterinary medical entries (n = 206) for evacuated or rescued animals (151) of various species, including avian, bovine, camelid, caprine, equine, ovine, and porcine species, temporarily housed at the Butte County fairgrounds in Gridley, Calif.

PROCEDURES

Case data were collected via a standardized form by volunteers with the University of California-Davis Veterinary Emergency Response Team during triage and treatment of animals brought to the shelter. Collected data were entered into a database. Multiple correspondence analysis was used to evaluate associations among patient species, types and severity of injuries, and behavior.

RESULTS

Burns, respiratory disease, gastrointestinal illnesses, and lacerations were the most prevalent illnesses and injuries among the overall shelter population for the first 12 days of the Camp Fire. Ovine patients were more likely to have had respiratory illness than were other species. The most prevalent medical conditions among equine patients were lacerations and gastrointestinal illnesses. Severe burns were most common among porcine, camelid, and avian patients. The temporal distribution of cases suggested the immediate evacuation of equine species and the delayed movement of bovine and avian species to the shelter.

CONCLUSIONS AND CLINICAL RELEVANCE

Collection of animal health information through the database allowed assessment of prevalent medical conditions among various farm animals following a wildfire. Adaptation of this database to other disasters could improve emergency response protocols by providing guidance for management of resources and allow retrospective assessment for response improvement.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To describe clinical and clinicopathologic findings and outcome of horses with meningitis and meningoencephalomyelitis.

Design—Retrospective case series.

Animals—28 horses.

Procedures—Medical records of horses admitted to the hospital during a 25-year period were reviewed. Horses with a definitive diagnosis of meningitis or meningoencephalomyelitis were included in this study. Information extracted from the medical records included signalment, history, reason for admission, clinical signs, results of clinicopathologic testing and diagnostic procedures, treatment, outcome, and necropsy findings.

Results—22 horses had confirmed infectious disease (19 bacterial, 2 parasitic, and 1 fungal), 4 had suspected infectious disease on the basis of CSF cytologic examination findings, and 2 had noninfectious meningitis or meningoencephalomyelitis. Trauma of the head and vertebral column with disruption of the blood-brain barrier and local ascending or hematogenous spread were the most common routes of infection. Common neurologic signs included abnormal mental status, cranial nerve deficits, vestibular dysfunction, ataxia, tetraparesis, and apparent neck pain. Common hematologic abnormalities included leukocytosis, neutrophilia, lymphopenia, and hyperfibrinogenemia. Cytologic examination of CSF samples revealed moderate to marked suppurative inflammation. Mortality rate was 96.4%. Microbial culture of CSF yielded bacterial growth in 15 of 23 horses (before death [2 horses], after death [11], and both [2]).

Conclusions and Clinical Relevance—Results suggested that meningitis and meningoencephalomyelitis are uncommon disorders in horses. Infectious disease was more common than noninfectious disease. Local trauma, ascending infection, or hematogenous spread of infection were the most common causes of meningitis or meningoencephalomyelitis. Neurologic deficits, neutrophilia, lymphopenia, hyperfibrinogenemia, and CSF with neutrophilic pleocytosis were common findings in affected horses.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine susceptibility of cattle to infection with Ehrlichia equi and the agent of human granulocytic ehrlichiosis (HGE).

Design—Experimental disease and prevalence survey.

Animals—6 cattle, 2 horses, and 2,725 serum samples from healthy cattle.

Procedure—2 cattle and 1 horse were inoculated with E equi, 2 cattle and 1 horse were inoculated with the HGE agent, and 2 cattle served as sham-inoculated controls; inoculated animals were evaluated via clinical, hematologic, serologic, and real-time polymerase chain reaction tests. Prevalence of antibodies against E equi in 2,725 healthy cattle was determined by use of an indirect immunofluorescent technique.

Results—No abnormal clinical or hematologic findings or inclusion bodies within granulocytes were observed in the cattle after inoculation, and results of all polymerase chain reaction tests were negative. Seroconversion in inoculated cattle developed 10 to 12 days after inoculation (reciprocal titers, 160). Both horses developed clinical signs of ehrlichiosis. Five of 2,725 (0.18%) cattle were seropositive for E equi, with titers ranging from 20 to 80. All seropositive cattle originated from the same tick-rich region in the Sierra Nevada foothills.

Conclusions and Clinical Relevance—Results suggest that cattle are not susceptible to infection with E equi or the agent of HGE and that prevalence of exposure to E equi in healthy cattle is low. Therefore, E equi and the agent of HGE are likely of negligible importance for cattle in North America. (J Am Vet Med Assoc 2001;218:1160–1162)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Case Description—A 15-year-old Saddlebred gelding used for competitive pleasure driving had a 1-year history of head shaking while pulling a cart.

Clinical Findings—The horse had cystic corpora nigra in both eyes and concomitant classic and operant conditioned responses to wearing a bridle with bilateral eye covers (blinkers).

Treatment and Outcome—Deflation and coagulation of the cysts with an infrared diode laser and behavior modification consisting of desensitization and counterconditioning were used to successfully restore performance.

Clinical Relevance—Behavioral changes in horses can result from a combination of physical and psychologic causes. A combination of appropriate medical treatment of physical abnormalities and a behavioral modification plan is necessary to successfully treat behavioral problems in these patients.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate deafness in American Paint Horses by phenotype, clinical findings, brainstem auditory-evoked responses (BAERs), and endothelin B receptor (EDNBR) genotype.

Design—Case series and case-control studies.

Animals—14 deaf American Paint Horses, 20 suspected-deaf American Paint Horses, and 13 nondeaf American Paint Horses and Pintos.

Procedures—Horses were categorized on the basis of coat color pattern and eye color. Testing for the EDNBR gene mutation (associated with overo lethal white foal syndrome) and BAERs was performed. Additional clinical findings were obtained from medical records.

Results—All 14 deaf horses had loss of all BAER waveforms consistent with complete deafness. Most horses had the splashed white or splashed white–frame blend coat pattern. Other patterns included frame overo and tovero. All of the deaf horses had extensive head and limb white markings, although the amount of white on the neck and trunk varied widely. All horses had at least 1 partially heterochromic iris, and most had 2 blue eyes. Ninety-one percent (31/34) of deaf and suspected-deaf horses had the EDNBR gene mutation. Deaf and suspected-deaf horses were used successfully for various performance events. All nondeaf horses had unremarkable BAER results.

Conclusions and Clinical Relevance—Veterinarians should be aware of deafness among American Paint Horses, particularly those with a splashed white or frame overo coat color pattern, blend of these patterns, or tovero pattern. Horses with extensive head and limb markings and those with blue eyes appeared to be at particular risk.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine molecular characteristics, antimicrobial susceptibility, and toxigenicity of Clostridium difficile isolates from horses in an intensive care unit and evaluate associations among severity of clinical disease with specific strains of C difficile.

Design—Prospective study.

Animals—130 horses.

Procedures—Feces were collected from horses admitted for acute gastrointestinal tract disease with loose feces and submitted for microbial culture and immunoassay for toxin production. Polymerase chain reaction assays were performed on isolates for toxins A and B genes and strain identification.

Results—Isolates were grouped into 3 strains (A, B, and C) on the basis of molecular banding patterns. Toxins A and B gene sequences were detected in 93%, 95%, and 73% of isolates of strains A, B, and C, respectively. Results of fecal immunoassays for toxin A were positive in 40%, 63%, and 16% of horses with strains A, B, and C, respectively. Isolates in strain B were resistant to metronidazole. Horses infected with strain B were 10 times as likely to have been treated with metronidazole prior to the onset of diarrhea as horses infected with other strains. Duration from onset of diarrhea to discharge (among survivors) was longer, systemic inflammatory response syndromes were more pronounced, and mortality rate was higher in horses infected with strain B than those infected with strains A and C combined.

Conclusions and Clinical Relevance—Horses may be infected with a number of heterogeneous isolates of C difficile. Results indicated that toxigenicity and antimicrobial susceptibility of isolates vary and that metronidazole-resistant strains may be associated with severe disease.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine molecular characteristics of Clostridium difficile isolates from foals with diarrhea and identify clinical abnormalities in affected foals.

Design—Retrospective study.

Animals—28 foals with C difficile-associated diarrhea.

Procedure—Toxigenicity, molecular fingerprinting, and antibiotic susceptibility patterns were determined. Information on signalment, clinical findings, results of clinicopathologic testing, whether antimicrobials had been administered prior to development of diarrhea, and outcome was obtained from the medical records.

Results—Twenty-three (82%) foals survived. Toxin A and B gene sequences were detected in isolates from 24 of 27 foals, whereas the toxin B gene alone was detected in the isolate from 1 foal. Results of an ELISA for toxin A were positive for fecal samples from only 8 of 20 (40%) foals. Ten of 23 (43%) isolates were resistant to metronidazole. Molecular fingerprinting revealed marked heterogeneity among isolates, except for the metronidazole-resistant isolates. Sixteen foals had tachypnea. Hematologic abnormalities were indicative of inflammation. Common serum biochemical abnormalities included metabolic acidosis, hyponatremia, hypocalcemia, azotemia, hypoproteinemia, hyperglycemia, and high enzyme activities. Passive transfer of maternal antibodies was adequate in all 12 foals evaluated.

Conclusions and Clinical Relevance—Results suggest that a large percentage of C difficile isolates from foals with diarrhea will have the toxin A and B gene sequences. Because of the possibility that isolates will be resistant to metronidazole, susceptibility testing is warranted. Clostridium difficile isolates from foals may have a substantial amount of molecular heterogeneity. Clinical and hematologic findings in affected foals are similar to those for foals with diarrhea caused by other pathogens. (J Am Vet Med Assoc 2002;220:67–73)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To develop and use a sensitive molecular assay for detecting the phospholipase D (PLD) exotoxin gene of Corynebacterium pseudotuberculosis in an attempt to identify insect vectors that may be important in transmission of clinical disease in horses.

Sample Population—2,621 flies of various species.

Procedure—A real-time polymerase chain reaction (PCR)-based fluorogenic 5' nuclease (TaqMan) system (ie, TaqMan PCR assay) was developed for the detection of the PLD gene in insects. Flies were collected monthly (May to November 2002) from 5 farms in northern California where C pseudotuberculosis infection in horses is endemic. Three of the 5 farms (which housed a total of 358 horses) had diseased horses during the study period. A total of 2,621 flies of various species were tested for the PLD gene of C pseudotuberculosis.

Results—Evidence of bacterial DNA for the PLD gene was detected in skin biopsy specimens from clinically affected horses and from 3 fly species collected from farms where affected horses were housed. Farms with a high incidence of diseased horses had a high proportion of insects carrying the organism. High percentages of flies with positive results for the PLD gene were observed in October, when most clinically affected horses were observed.

Conclusions and Clinical Relevance—Our results are consistent with the hypothesis that C pseudotuberculosis may be vectored to horses by flies. Three potential vectors were identified, including Haematobia irritans, Stomoxys calcitrans, and Musca domestica. The organism can be identified in up to 20% of house flies (Musca domestica) in the vicinity of diseased horses. (Am J Vet Res 2004;65:829–834)

Full access
in American Journal of Veterinary Research