Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: John Dustin Loy x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE To evaluate the effect of serum antibody abundance against bovine coronavirus (BCV) on BCV shedding and risk of bovine respiratory disease (BRD) in beef calves from birth through the first 5 weeks in a feedlot.

ANIMALS 890 natural-service crossbred beef calves from 4 research herds.

PROCEDURES Serial blood samples for measurement of serum anti-BCV antibody abundance by an ELISA and nasal swab specimens for detection of BCV and other viral and bacterial BRD pathogens by real-time PCR methods were collected from all calves or subsets of calves at predetermined times from birth through the first 5 weeks after feedlot entry. Test results were compared among herds, over time, and between calves that did and did not develop BRD. The associations of various herd and calf factors with test results were also evaluated.

RESULTS At the calf level, serum anti-BCV antibody abundance was not associated with BCV shedding, but BCV shedding was positively associated with BRD incidence before and after weaning. The mean serum anti-BCV antibody abundance at weaning for a group of calves was inversely related with the subsequent incidence of BRD in that group; however, the serum anti-BCV antibody abundance at weaning for individual calves was not predictive of which calves would develop BRD after feedlot entry.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that serum anti-BCV antibody abundance as determined with ELISA were not associated with BCV shedding or risk of BRD in individual beef calves from birth through the first 5 weeks after feedlot entry.

Full access
in American Journal of Veterinary Research

Abstract

Antimicrobial resistance (AMR) is a critical One Health concern with implications for human, animal, plant, and environmental health. Antimicrobial susceptibility testing (AST), antimicrobial resistance testing (ART), and surveillance practices must be harmonized across One Health sectors to ensure consistent detection and reporting practices. Veterinary diagnostic laboratory stewardship, clinical outcomes studies, and training for current and future generations of veterinarians and laboratorians are necessary to minimize the spread of AMR and move veterinary medicine forward into an age of better antimicrobial use practices. The purpose of this article is to describe current knowledge gaps present in the literature surrounding ART, AST, and clinical or surveillance applications of these methods and to suggest areas where AMR research can fill these knowledge gaps. The related Currents in One Health by Maddock et al, JAVMA, March 2024, addresses current limitations to the use of genotypic ART methods in clinical veterinary practice.

Open access

Abstract

Antimicrobial resistance is a global One Health concern with critical implications for the health of humans, animals, and the environment. Phenotypic methods of bacterial culture and antimicrobial susceptibility testing remain the gold standards for the detection of antimicrobial resistance and appropriate patient care; however, genotypic-based methods, such as PCR, whole genome sequencing, and metagenomic sequencing, for detection of genes conferring antimicrobial resistance are increasingly available without inclusion of appropriate standards for quality or interpretation. Misleading test results may lead to inappropriate antimicrobial treatment and, in turn, poor patient outcomes and the potential for increased incidence of antimicrobial resistance. This article explores the current landscape of clinical and methodological aspects of antimicrobial susceptibility testing and genotypic antimicrobial resistance test methods. Additionally, it describes the limitations associated with employing genotypic-based test methods in the management of veterinary patients from a One Health perspective. The companion Currents in One Health by Maddock et al, AJVR, March 2024, addresses current and future needs for veterinary antimicrobial resistance research.

Open access