Search Results

You are looking at 1 - 10 of 31 items for

  • Author or Editor: Joanne R. Paul-Murphy x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To establish an objective method of determining proventricular diameter in psittacine birds by assessment of lateral whole-body radiographic views.

Design—Retrospective case-control study.

Animals—100 parrots with no signs of gastric disease and 19 parrots with signs of gastric disease.

Procedures—Measurements were obtained for the following variables: proventricular diameter at the level of the junction between the last thoracic vertebra and synsacrum, maximum distance between the dorsal serosa of the proximal aspect of the proventriculus and dorsal border of the sternum, maximum coelomic cavity height at the level of the proximal aspect of the proventriculus, and maximum dorsoventral height of the keel of the sternum. The ratio of proventricular diameter to each of those measurements was calculated and compared among species within the group without signs of gastric disease and between the gastric and nongastric disease groups.

Results—No significant differences were seen among species of parrots without signs of gastric disease for any ratio, but there were significant differences between parrots with gastric signs and those without gastric signs for all ratios. Only the proventricular diameterto-maximum dorsoventral height of the keel of the sternum ratio had no numeric overlap between groups. Sensitivity and specificity of the ratio for detection of proventricular enlargement were both 100%. Six causes associated with proventricular enlargement were identified.

Conclusions and Clinical Relevance—Evaluation of the proventricular diameter-to-keel height ratio is a new method for evaluating proventricular size in psittacines. Ratio values < 0.48 indicate normal proventricular diameter and the absence of proventricular disease.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To characterize clinical and pathological findings of rabbits evaluated at a veterinary teaching hospital because of dystocia.

DESIGN

Retrospective case series.

ANIMALS

9 client-owned rabbits and 1 wild rabbit with signs of dystocia evaluated at a veterinary teaching hospital from 1996 through 2016.

PROCEDURES

Medical records of rabbits were reviewed to collect data on signalment; medical history; physical examination, laboratory, diagnostic imaging, and procedural findings; treatment; final diagnosis; and outcome. Data were summarized.

RESULTS

Dystocia in 7 rabbits was successfully managed through medical treatment, assisted vaginal delivery, or both (n = 6) or surgery alone (1); 3 rabbits were euthanized. Primiparous does, does ≤ 4 years old, and does of small breeds (< 2 kg [4.4 lb]) were most common. All client-owned rabbits had clinical signs of abnormal second-stage parturition, whereas the wild rabbit had only hemorrhagic vulvar discharge. Imaging was used to identify the number, size, and state of fetuses in most rabbits. Overall, 35 fetuses were accounted for, 25 of which were dead or later died. The cause of dystocia was determined for 8 rabbits and included fetal-maternal mismatch (n = 4), uterine inertia (2), fetal death or mummification (1), and stress-induced abortion (1).

CONCLUSIONS AND CLINICAL RELEVANCE

Obstructive dystocia from fetal macrosomia with or without secondary uterine inertia was the most common cause of dystocia in the evaluated rabbits. Although medical management was successful for many rabbits with dystocia in this study, surgery could still be required in other affected rabbits, particularly when fetal-maternal mismatch is involved.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To evaluate the pharmacokinetics of hydromorphone hydrochloride after IM and IV administration to orange-winged Amazon parrots (Amazona amazonica).

ANIMALS

8 orange-winged Amazon parrots (4 males and 4 females).

PROCEDURES

Hydromorphone (1 mg/kg) was administered once IM. Blood samples were collected 5 minutes and 0.5, 1.5, 2, 3, 6, and 9 hours after drug administration. Plasma hydromorphone concentrations were determined with liquid chromatography-tandem mass spectrometry, and pharmacokinetic parameters were calculated with a compartmental model. The experiment was repeated 1 month later with the same dose of hydromorphone administered IV.

RESULTS

Plasma hydromorphone concentrations were > 1 ng/mL for 6 hours in 8 of 8 and 6 of 7 parrots after IM and IV injection, respectively. After IM administration, mean bioavailability was 97.6%, and mean maximum plasma concentration was 179.1 ng/mL 17 minutes after injection. Mean volume of distribution and plasma drug clearance were 4.24 L/kg and 64.2 mL/min/kg, respectively, after IV administration. Mean elimination half-lives were 1.74 and 1.45 hours after IM and IV administration, respectively.

CONCLUSIONS AND CLINICAL RELEVANCE

Hydromorphone hydrochloride had high bioavailability and rapid elimination after IM administration, with rapid plasma clearance and a large volume of distribution after IV administration in orange-winged Amazon parrots. Drug elimination half-lives were short. Further pharmacokinetic studies of hydromorphone and its metabolites, including investigation of multiple doses, different routes of administration, and sustained-release formulations, are recommended.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine pharmacokinetics after IV and oral administration of a single dose of tramadol hydrochloride to Hispaniolan Amazon parrots (Amazona ventralis).

Animals—9 healthy adult Hispaniolan Amazon parrots (3 males, 5 females, and 1 of unknown sex).

Procedures—Tramadol (5 mg/kg, IV) was administered to the parrots. Blood samples were collected from −5 to 720 minutes after administration. After a 3-week washout period, tramadol (10 and 30 mg/kg) was orally administered to parrots. Blood samples were collected from −5 to 1,440 minutes after administration. Three formulations of oral suspension (crushed tablets in a commercially available suspension agent, crushed tablets in sterile water, and chemical-grade powder in sterile water) were evaluated. Plasma concentrations of tramadol and its major metabolites were measured via high-performance liquid chromatography.

Results—Mean plasma tramadol concentrations were > 100 ng/mL for approximately 2 to 4 hours after IV administration of tramadol. Plasma concentrations after oral administration of tramadol at a dose of 10 mg/kg were < 40 ng/mL for the entire time period, but oral administration at a dose of 30 mg/kg resulted in mean plasma concentrations > 100 ng/mL for approximately 6 hours after administration. Oral administration of the suspension consisting of the chemical-grade powder resulted in higher plasma tramadol concentrations than concentrations obtained after oral administration of the other 2 formulations; however, concentrations differed significantly only at 120 and 240 minutes after administration.

Conclusions and Clinical Relevance—Oral administration of tramadol at a dose of 30 mg/kg resulted in plasma concentrations (> 100 ng/mL) that have been associated with analgesia in Hispaniolan Amazon parrots.

Restricted access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To determine pharmacokinetics and sedative effects of buprenorphine after IV and oral transmucosal (OTM) administration in guinea pigs.

ANIMALS 14 male guinea pigs (6 adults for preliminary experiment; eight 8 to 11-week-old animals for primary study).

PROCEDURES A preliminary experiment was conducted to determine an appropriate buprenorphine dose. In the primary study, buprenorphine (0.2 mg/kg) was administered IV or OTM, and blood samples were obtained. The pH of the oral cavity was measured before OTM administration. Sedation was scored for 6 hours on a scale of 0 to 3 (0 = no sedation and 3 = heavy sedation). After a 7-day washout period, procedures were repeated in a crossover manner. Plasma buprenorphine concentration was quantified, and data were analyzed with a noncompartmental pharmacokinetic approach.

RESULTS Mean peak plasma buprenorphine concentrations were 46.7 and 2.4 ng/mL after IV and OTM administration, respectively. Mean time to maximum plasma buprenorphine concentration was 1.5 and 71.2 minutes, and mean terminal half-life was 184.9 and 173.0 minutes for IV and OTM administration, respectively. There was a range of sedation effects (0 to 2) for both routes of administration, which resolved within the 6-hour time frame.

CONCLUSIONS AND CLINICAL RELEVANCE On the basis of pharmacokinetic parameters for this study, buprenorphine at 0.2 mg/kg may be administered IV every 7 hours or OTM every 4 hours to maintain a target plasma concentration of 1 ng/mL. Further studies are needed to evaluate administration of multiple doses and sedative effects in guinea pigs with signs of pain.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of hydromorphone hydrochloride after IV and IM administration in American kestrels (Falco sparverius).

Animals—12 healthy adult American kestrels.

Procedures—A single dose of hydromorphone (0.6 mg/kg) was administered IM (pectoral muscles) and IV (right jugular vein); the time between IM and IV administration experiments was 1 month. Blood samples were collected at 5 minutes, 1 hour, and 3 hours (n = 4 birds); 0.25, 1.5, and 9 hours (4); and 0.5, 2, and 6 hours (4) after drug administration. Plasma hydromorphone concentrations were determined by means of liquid chromatography with mass spectrometry, and pharmacokinetic parameters were calculated with a noncompartmental model. Mean plasma hydromorphone concentration for each time was determined with naïve averaged pharmacokinetic analysis.

Results—Plasma hydromorphone concentrations were detectable in 2 and 3 birds at 6 hours after IM and IV administration, respectively, but not at 9 hours after administration. The fraction of the hydromorphone dose absorbed after IM administration was 0.75. The maximum observed plasma concentration was 112.1 ng/mL (5 minutes after administration). The terminal half-life was 1.25 and 1.26 hours after IV and IM administration, respectively.

Conclusion and Clinical Relevance—Results indicated hydromorphone hydrochloride had high bioavailability and rapid elimination after IM administration, with a short terminal half-life, rapid plasma clearance, and large volume of distribution in American kestrels. Further studies regarding the effects of other doses, other administration routes, constantrate infusions, and slow release formulations on the pharmacokinetics of hydromorphone hydrochloride and its metabolites in American kestrels may be indicated.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the thermal antinociceptive effects and duration of action of buprenorphine hydrochloride after IM administration to American kestrels (Falco sparverius).

Animals—12 healthy 3-year-old American kestrels.

Procedures—Buprenorphine hydrochloride (0.1, 0.3, and 0.6 mg/kg) and a control treatment (saline [0.9% NaCl] solution) were administered IM in a randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus. Adverse effects were monitored for 6 hours after treatment administration.

Results—Buprenorphine hydrochloride at 0.1, 0.3, and 0.6 mg/kg, IM, increased thermal threshold for 6 hours, compared with the response for the control treatment. There were no significant differences among buprenorphine treatments. A mild sedative effect was detected at a dose of 0.6 mg of buprenorphine/kg.

Conclusion and Clinical Relevance—At the doses tested, buprenorphine hydrochloride resulted in thermal antinociception in American kestrels for at least 6 hours, which suggested that buprenorphine has analgesic effects in this species. Further studies with longer evaluation periods and additional forms of noxious stimuli, formulations, dosages, and routes of administration are needed to fully evaluate the analgesic effects of buprenorphine in American kestrels.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate antinociceptive effects and pharmacokinetics of butorphanol tartrate after IM administration to American kestrels (Falco sparverius).

Animals—Fifteen 2- to 3-year-old American kestrels (6 males and 9 females).

Procedures—Butorphanol (1, 3, and 6 mg/kg) and saline (0.9% NaCl) solution were administered IM to birds in a crossover experimental design. Agitation-sedation scores and foot withdrawal response to a thermal stimulus were determined 30 to 60 minutes before (baseline) and 0.5, 1.5, 3, and 6 hours after treatment. For the pharmacokinetic analysis, butorphanol (6 mg/kg, IM) was administered in the pectoral muscles of each of 12 birds.

Results—In male kestrels, butorphanol did not significantly increase thermal thresholds for foot withdrawal, compared with results for saline solution administration. However, at 1.5 hours after administration of 6 mg of butorphanol/kg, the thermal threshold was significantly decreased, compared with the baseline value. Foot withdrawal threshold for female kestrels after butorphanol administration did not differ significantly from that after saline solution administration. However, compared with the baseline value, withdrawal threshold was significantly increased for 1 mg/kg at 0.5 and 6 hours, 3 mg/kg at 6 hours, and 6 mg/kg at 3 hours. There were no significant differences in mean sedation-agitation scores, except for males at 1.5 hours after administration of 6 mg/kg.

Conclusion and Clinical Relevance—Butorphanol did not cause thermal antinociception suggestive of analgesia in American kestrels. Sex-dependent responses were identified. Further studies are needed to evaluate the analgesic effects of butorphanol in raptors.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the antinociceptive and sedative effects and duration of action of hydromorphone hydrochloride after IM administration to American kestrels (Falco sparverius).

Animals—11 healthy 2-year-old American kestrels.

Procedures—Hydromorphone (0.1, 0.3, and 0.6 mg/kg) and an equivalent volume of saline (0.9% NaCl) solution (control treatment) were administered IM to kestrels in a masked randomized complete crossover study design. Foot withdrawal response to a thermal stimulus was determined 30 to 60 minutes before (baseline) and 0.5, 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were determined 3 to 5 minutes before each thermal test.

Results—Hydromorphone at 0.6 mg/kg, IM, significantly increased the thermal foot withdrawal threshold, compared with the response after administration of saline solution, for up to 3 hours, and hydromorphone at 0.1, 0.3, and 0.6 mg/kg, IM, significantly increased withdrawal responses for up to 6 hours, compared with baseline values. No significant differences in mean sedation-agitation scores were detected between hydromorphone and saline solution treatments; however, appreciable sedation was detected in 4 birds when administered 0.6 mg of hydromorphone/kg.

Conclusions and Clinical Relevance—Hydromorphone at the doses evaluated significantly increased the thermal nociception threshold for American kestrels for 3 to 6 hours. Additional studies with other types of stimulation, formulations, dosages, routes of administration, and testing times are needed to fully evaluate the analgesic and adverse effects of hydromorphone in kestrels and other avian species and the use of hydromorphone in clinical settings.

Restricted access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine the pharmacokinetics of amantadine after oral administration of single and multiple doses to orange-winged Amazon parrots (Amazona amazonica).

ANIMALS

12 adult orange-winged Amazon parrots (6 males and 6 females).

PROCEDURES

A single dose of amantadine was orally administered to 6 birds at 5 mg/kg (n = 2), 10 mg/kg (2), and 20 mg/kg (2) in a preliminary trial. On the basis of the results, a single dose of amantadine (10 mg/kg, PO) was administered to 6 other birds. Two months later, multiple doses of amantadine (5 mg/kg, PO, q 24 h for 7 days) were administered to 8 birds. Heart rate, respiratory rate, behavior, and urofeces were monitored. Plasma concentrations of amantadine were measured via tandem liquid chromatography–mass spectrometry. Pharmacokinetic parameter estimates were determined via noncompartmental analysis.

RESULTS

Mean ± SD maximum plasma concentration, time to maximum plasma concentration, half-life, and area under the concentration-versus-time curve from the last dose to infinity were 1,174 ± 186 ng/mL, 3.8 ± 1.8 hours, 23.2 ± 2.9 hours, and 38.6 ± 7.4 μg·h/mL, respectively, after a single dose and 1,185 ± 270 ng/mL, 3.0 ± 2.4 hours, 21.5 ± 5.3 hours, and 26.3 ± 5.7 μg·h/mL, respectively, at steady state after multiple doses. No adverse effects were observed.

CONCLUSIONS AND CLINICAL RELEVANCE

Once-daily oral administration of amantadine at 5 mg/kg to orange-winged Amazon parrots maintained plasma concentrations above those considered to be therapeutic in dogs. Further studies evaluating safety and efficacy of amantadine in orange-winged Amazon parrots are warranted.

Restricted access
in American Journal of Veterinary Research