Search Results
You are looking at 1 - 10 of 16 items for
- Author or Editor: Joanne Kramer x
- Refine by Access: All Content x
Abstract
Objective—To evaluate pelvic movement over a large number of strides in sound horses and in horses with induced hind limb lameness by applying methods to the pelvis that have been described for evaluating vertical head movement in horses with induced forelimb lameness.
Animals—17 adult horses.
Procedure—Horses were filmed while trotting on a treadmill before and after induction of transient mild and moderate hind limb lamenesses. Vertical pelvic movement was measured by a signal decomposition method. The vertical pelvic signal was decomposed into a periodic component (A1) that occurred at half the stride frequency (representing vertical pelvic movement caused by lameness) and another periodic component (A2) that occurred at stride frequency (representing normal vertical pelvic movement of a trotting horse). Vertical pelvic and foot positions were correlated for each stride to compare the difference between the minimum and maximum heights of the pelvis during and after stance of the right hind limb to the minimum and maximum heights of the pelvis during and after stance of the left hind limb.
Results—Maximum pelvic height difference and lameness amplitude (A1) differed significantly between sound and mild or moderate hind limb lameness conditions. Mean A1 value for vertical pelvic movement in sound horses was less than that previously reported for vertical head movement.
Conclusions and Clinical Relevance—Pelvic height differences and signal decomposition of pelvic movement can be used to objectively evaluate hind limb lameness in horses over a large number of strides in clinical and research settings. (Am J Vet Res 2004;65: 741–747)
Abstract
Objective—To investigate continuous wavelet transformation and neural network classification of gait data for detecting forelimb lameness in horses.
Animals—12 adult horses with mild forelimb lameness.
Procedure—Position of the head and right forelimb foot, metacarpophalangeal (ie, fetlock), carpal, and elbow joints was determined by use of kinematic analysis before and after palmar digital nerve blocks. We obtained 8 recordings from horses without lameness, 8 with right forelimb lameness, and 8 with left forelimb lameness. Vertical and horizontal position of the head and vertical position of the foot, fetlock, carpal, and elbow joints were processed by continuous wavelet transformation. Feature vectors were created from the transformed signals and a neural network trained with data from 6 horses, which was then tested on the remaining 2 horses for each category until each horse was used twice for training and testing. Correct classification percentage (CCP) was calculated for each combination of gait signals tested.
Results—Wavelet-transformed vertical position of the head and right forelimb foot had greater CCP (85%) than untransformed data (21%). Adding data from the fetlock, carpal, or elbow joints did not improve CCP over that for the head and foot alone.
Conclusions and Clinical Relevance—Wavelet transformation of gait data extracts information that is important for the detection and differentiation of forelimb lameness of horses. All of the necessary information to detect lameness and differentiate the side of lameness can be obtained by observation of vertical head movement in concert with movement of the foot of 1 forelimb. (Am J Vet Res 2003;64:1376–1381)
Abstract
Objective—To identify hind limb and pelvic kinematic variables that change in trotting horses after induced lameness of the distal intertarsal and tarsometatarsal joints and after subsequent intra-articular administration of anesthetic.
Animals—8 clinically normal adult horses.
Procedure—Kinematic measurements were made before and after transient endotoxin-induced lameness of the distal intertarsal and tarsometatarsal joints and after intra-articular administration of anesthetic. Fourteen displacement and joint angle (metatarsophalangeal [fetlock] and tarsal joints) measurements were made on the right hind limb, sacrum, and the right and left tubera coxae. Kinematic measurements were compared by general linear models, using a repeated measures ANOVA. Post hoc multiple comparisons between treatments were evaluated with a Fisher least squared difference test at α = 0.05.
Results—After lameness induction, fetlock and tarsal joint extension during stance decreased, fetlock joint flexion and hoof height during swing increased, limb protraction decreased, and vertical excursion of the tubera coxae became more asymmetric. After intra-articular administration of anesthetic, limb protraction returned to the degree seen before lameness, and vertical excursion of the tubera coxae became more symmetric.
Conclusions and Clinical Relevance—Increased length of hind limb protraction and symmetry of tubera coxae vertical excursion are sensitive indicators of improvement in tarsal joint lameness. When evaluating changes in tarsal joint lameness, evaluating the horse from the side (to assess limb protraction) is as important as evaluating from the rear (to assess pelvic symmetry). (Am J Vet Res 2000;61:1031–1036)
Abstract
Objective—To compare a sensor-based accelerometer-gyroscopic (A-G) system with a video-based motion analysis system (VMAS) technique for detection and quantification of lameness in horses.
Animals—8 adult horses.
Procedure—2 horses were evaluated once, 2 had navicular disease and were evaluated before and after nerve blocks, and 4 had 2 levels of shoe-induced lameness, alternatively, in each of 4 limbs. Horses were instrumented with an accelerometer transducer on the head and pelvis, a gyroscopic transducer on the right forelimb and hind feet, and a receiver-transmitter. Signals from the A-G system were collected simultaneously with those from the VMAS for collection of head, pelvis, and right feet positions with horses trotting on a treadmill. Lameness was detected with an algorithm that quantified lameness as asymmetry of head and pelvic movements. Comparisons between the A-G and VMAS systems were made by use of correlation and agreement (κ value) analyses.
Results—Correlation between the A-G and VMAS systems for quantification of lameness was linear and high ( r 2 = 0.9544 and 0.8235 for forelimb and hind limb, respectively). Quantification of hind limb lameness with the A-G system was higher than measured via VMAS. Agreement between the 2 methods for detection of lameness was excellent (κ = 0.76) for the forelimb and good (κ = 0.56) for the hind limb.
Conclusions and Clinical Relevance—The A-G system detected and quantified forelimb and hind limb lameness in horses trotting on the treadmill. Because the data are collected wirelessly, this system might be used to objectively evaluate lameness in the field. ( Am J Vet Res 2004;65:665–670)
Abstract
Objective—To characterize compensatory movements of the head and pelvis that resemble lameness in horses.
Animals—17 adult horses.
Procedure—Kinematic evaluations were performed while horses trotted on a treadmill before and after shoe-induced lameness. Lameness was quantified and the affected limb determined by algorithms that measured asymmetry in vertical movement of the head and pelvis. Induced primary lameness and compensatory movements resembling lameness were assessed by the Friedman test. Association between induced lameness and compensatory movements was examined by regression analysis.
Results—Compensatory movements resembling lameness in the ipsilateral forelimb were seen with induced lameness of a hind limb. There was less downward and less upward head movement during and after the stance phase of the ipsilateral forelimb. Doubling the severity of lameness in the hind limb increased severity of the compensatory movements in the ipsilateral forelimb by 50%. Compensatory movements resembling lameness of the hind limb were seen after induced lameness in a forelimb. There was less upward movement of the pelvis after the stance phase of the contralateral hind limb and, to a lesser extent, less downward movement of the pelvis during the stance phase of the ipsilateral hind limb. Doubling the severity of lameness in the forelimb increased compensatory movements of the contralateral hind limb by 5%.
Conclusions and Clinical Relevance—Induced lameness in a hind limb causes prominent compensatory movements resembling lameness in the ipsilateral forelimb. Induced lameness in a forelimb causes slight compensatory movements resembling lameness in the ipsilateral and contralateral hind limbs. (Am J Vet Res 2005;66:646–655)
Abstract
Objective—To determine the effectiveness of administering multiple doses of phenylbutazone alone or a combination of phenylbutazone and flunixin meglumine to alleviate lameness in horses.
Animals—29 adult horses with naturally occurring forelimb and hind limb lameness.
Procedures—Lameness evaluations were performed by use of kinematic evaluation while horses were trotting on a treadmill. Lameness evaluations were performed before and 12 hours after administration of 2 nonsteroidal anti-inflammatory drug (NSAID) treatment regimens. Phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days, or phenylbutazone paste was administered at approximately 2.2 mg/kg, PO, every 12 hours for 5 days in combination with flunixin meglumine administered at 1.1 mg/kg, IV, every 12 hours for 5 days.
Results—Alleviation of lameness was greater after administration of the combination of NSAIDs than after oral administration of phenylbutazone alone. Improvement in horses after a combination of NSAIDs did not completely mask lameness. Five horses did not improve after either NSAID treatment regimen. All posttreatment plasma concentrations of NSAIDs were less than those currently allowed by the United States Equestrian Federation Inc for a single NSAID. One horse administered the combination NSAID regimen died of acute necrotizing colitis during the study.
Conclusions and Clinical Relevance—Administration of a combination of NSAIDs at the dosages and intervals used in the study reported here alleviated the lameness condition more effectively than did oral administration of phenylbutazone alone. This may attract use of combinations of NSAIDs to increase performance despite potential toxic adverse effects.
Abstract
Objective—To assess the analytic sensitivity of an inertial sensor system for detection of the more severely affected forelimb in horses with bilateral lameness.
Animals—18 adult horses with forelimb lameness.
Procedures—Horses were fitted with inertial sensors and evaluated for lameness with a stationary force plate as they were trotted in a straight line. Inertial sensor-derived measurements for vertical head movement asymmetry (HMA) and vector sum (VS) of maximum and minimum head height differences between right and left halves of the stride were used to predict differences in mean peak vertical force (PVF) as a percentage of body weight between the right and left forelimbs. Repeatability was compared by calculation of the intraclass correlation coefficient (ICC) for each variable. Correct classification percentages for the lamer forelimb were determined by use of a stationary force plate as the standard.
Results—SEs of the prediction of difference in PVF between the right and left forelimbs from HMA and VS were 6.1% and 5.2%, respectively. Head movement asymmetry (ICC, 0.72) was less repeatable than PVF (ICC, 0.86) and VS (ICC, 0.84). Associations were positive and significant between HMA (R 2 = 0.73) and VS (R 2 = 0.81) and the difference in PVF between the right and left forelimbs. Correct classification percentages for HMA and VS for detecting the lamer forelimb were 83.3% and 77.8%, respectively.
Conclusions and Clinical Relevance—Results suggested that an inertial sensor system to measure vertical asymmetry (HMA and VS) due to forelimb lameness in horses trotting in a straight line has adequate analytic sensitivity for clinical use. Additional studies are required to assess specificity of the system.
Abstract
Case Description—A 4-month-old Missouri Fox Trotter colt was examined for a 5-week history of head tilt after treatment for suspected pulmonary Rhodococcus equi infection.
Clinical Findings—Computed tomography revealed osteolysis of the occipital, temporal, and caudal portion of the parietal bones of the left side of the cranium. A soft tissue mass compressing the occipital region of the cerebral cortex and cerebellum was associated with the osteolytic bone.
Treatment and Outcome—A rostrotentorial-suboccipital craniectomy approach was performed to remove fragmented occipital bone, debulk the intracranial mass, and obtain tissue samples for histologic examination and bacterial culture. All neurologic deficits improved substantially within 3 days after surgery. Bacterial culture of the resected soft tissue and bone fragments yielded R equi.
Clinical Relevance—Intracranial surgery in veterinary medicine has been limited to dogs and cats; however, in select cases, extrapolation of surgical techniques used in humans and small animals can assist with intracranial procedures in horses.