Search Results

You are looking at 1 - 10 of 33 items for

  • Author or Editor: Jeffrey Lakritz x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective

To determine pharmacokinetics and bioavailability of erythromycin base after intragastric administration and erythromycin lactobionate after IV administration to healthy foals and to compare a microbiologic assay with a high-performance liquid chromatography (HPLC) method to determine plasma concentrations of erythromycin A.

Animals

6 healthy foals that were 2 to 4 months old.

Procedure

Foals were given single doses of erythromycin (10 mg/kg of body weight, IV, and 25 mg/kg, intragastrically) in a crossover study. Venous blood samples were obtained at specific times after drug administration, and plasma was harvested for determination of erythromycin concentrations by microbiologic assay and a HPLC method. Pharmacokinetic analysis of plasma concentration-time data was performed, and results derived from each method were compared.

Results

Concentration-time profiles for IV administration were best described by a two-compartment open model. Comparing pharmacokinetic data obtained by the 2 methods revealed substantial differences in results. Values for area under the plasma concentration-time curve and area under the first moment of the curve were substantially higher when determined by the bioassay, indicating overestimation of plasma concentration-time data by this method. The derived rate transfer constants (K21 and Ke1) and mean residence time were significantly different, when determined by the bioassay. Systemic bioavailability of erythromycin base was low in all foals.

Conclusions and Clinical Relevance

The bioassay method overestimated plasma concentrations of erythromycin, compared with the HPLC method. Despite low systemic bioavailability of erythromycin base administered intragastrically, plasma concentrations of erythromycin exceeded, for at least 4 hours, the minimum inhibitory concentration of most Rhodococcus equi isolates. (Am J Vet Res 1999;60:414-419)

Free access
in American Journal of Veterinary Research

Abstract

Objective—To determine pharmacokinetics and plasma concentrations of erythromycin and related compounds after intragastric administration of erythromycin phosphate and erythromycin estolate to healthy foals.

Animals—11 healthy 2- to 6-month-old foals.

Procedure—Food was withheld from foals overnight before intragastric administration of erythromycin estolate (25 mg/kg of body weight; n = 8) and erythromycin phosphate (25 mg/kg; 7). Four foals received both drugs with 2 weeks between treatments. Plasma erythromycin concentrations were determined at various times after drug administration by use of high-performance liquid chromatography. Maximum plasma peak concentrations, time to maximum concentrations, area under plasma concentration versus time curves, half-life of elimination, and mean residence times were determined from concentration versus time curves.

Results—Maximum peak concentration of erythromycin A after administration of erythromycin phosphate was significantly greater than after administration of erythromycin estolate (2.9 ± 1.1 µg/ml vs 1.0 ± 0.82 µg/ml). Time to maximum concentration was shorter after administration of erythromycin phosphate than after erythromycin estolate (0.71 ± 0.29 hours vs 1.7 ± 1.2 hours). Concentrations of anhydroerythromycin A were significantly less 1 and 3 hours after administration of erythromycin estolate than after administration of erythromycin phosphate.

Conclusions and Clinical Relevance—Plasma concentrations of erythromycin A remained > 0.25 µg/ml (reported minimum inhibitory concentration for Rhodococcus equi) for at least 4 hours after intragastric administration of erythromycin phosphate or erythromycin estolate, suggesting that the recommended dosage for either formulation (25 mg/kg, q 6 h) should be adequate for treatment of R equi infections in foals. (Am J Vet Res 2000;61:914–919)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of prior feeding on pharmacokinetics and estimated bioavailability of orally administered microencapsulated erythromycin base (MEB) in healthy foals.

Animals—6 healthy foals, 3 to 5 months old.

Procedure—Foals were given 2 doses of MEB (25 mg/kg of body weight, PO). One dose was administered after food was withheld overnight, and the other was administered after foals had consumed hay. The study used a crossover design with a 2-week period between doses. Blood was collected via a jugular vein prior to and at specific times after drug administration. Concentrations of erythromycin A and anhydroerythromycin A in plasma were determined, using highperformance liquid chromatography. Results pharmacokinetic analysis of plasma concentration-time data for food-withheld and fed conditions were compared.

Results—Plasma concentrations of erythromycin A for foals were lower after feeding than concentrations when food was withheld. Area under the plasma concentration- time curve, maximum plasma concentration, and estimated bioavailability were greater in foals when food was withheld than when foals were fed. Anhydroerythromycin A was detected in plasma after administration of MEB in all foals.

Conclusions and Clinical Relevance—Foals should be given MEB before they are fed hay. Administration of MEB to foals from which food was withheld overnight apparently provides plasma concentrations of erythromycin A that exceed the minimum inhibitory concentration of Rhodococcus equi for approximately 5 hours. The dosage of 25 mg/kg every 8 hours, PO, appears appropriate. (Am J Vet Res 2000;61:1011–1015)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To characterize and purify covalent complexes of matrix metalloproteinase-9 (MMP-9) and haptoglobin released by bovine granulocytes in vitro.

Sample Population—Blood samples obtained from healthy cows and cows with acute and chronic inflammation to obtain WBCs and sera.

Procedures—WBCs were isolated by differential centrifugation, hypotonic lysis of RBCs, and degranulated by stimulation with phorbol ester (20 ng/mL). Cell-conditioned medium was subjected to affinity and gel chromatography and purified proteins subjected to SDS- PAGE gelatin zymography, western blot analysis, Coomassie blue staining, and peptide mass spectrometry for protein identification. Sera of cows hospitalized for acute and chronic septic conditions and of clinically normal cows were analyzed with similar methods.

Results—Matrix metalloproteinase-9 was released from neutrophils in vitro and migrated to a molecular mass of approximately 220 kd (prodimer), approximately 105 kd (promonomer), and > 220 kd (high–molecular mass complexes). These high–molecular mass complexes were composed of α- and β-haptoglobin and MMP-9 (ratio13:13:1). Complexes of MMP-9 and haptoglobin had biochemical properties of both its protein constituents (ie, enzymatic activity toward gelatin and hemoglobin binding). Complexes of MMP-9 and haptoglobin were also detected in sera of cows with acute inflammation, but not in clinically normal cows or cows with chronic disease.

Conclusions and Clinical Relevance—A fraction of neutrophil MMP-9 is released in complex with haptoglobin. The complex is present in granules and retains biological activity of its components. Detection of the complex in serum may provide an indicator of acute inflammation.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To describe concentration-over-time data for ampicillin and sulbactam in the digital and systemic circulations and synovial fluid (SYN) of cattle following a single injection of ampicillin-sulbactam as a regional IV perfusion (RIVP).

ANIMALS 6 healthy adult nonlactating Jersey-crossbred cows.

PROCEDURES The right hind limb of each cow was aseptically prepared. A tourniquet was applied around the midmetatarsal region, and 1.0 g of ampicillin with 0.5 g of sulbactam in a combined formulation was administered as an RIVP into the dorsal common digital vein (DCDV). Blood samples from the DCDV and jugular vein and SYN samples from the metatarsophalangeal joint of the prepared limb were collected immediately before and at predetermined times for 24 hours after RIVP. One blood sample was obtained from the abaxial proper plantar vein of the lateral digit of the prepared limb 0.25 hours after RIVP. Serum and SYN ampicillin and sulbactam concentrations were determined by high-performance liquid chromatography.

RESULTS Mean ± SD maximum concentration of ampicillin in SYN and serum obtained from the abaxial proper plantar and jugular veins was 1,995 ± 1,011 μg/mL, 5,422 ± 1,953 μg/mL, and 2.5 ± 1.6 μg/mL, respectively. Corresponding serum and SYN concentrations of sulbactam were lower but followed the same pattern over time as those for ampicillin. Synovial fluid ampicillin concentration remained above 8 μg/mL for a mean time of 18.9 hours.

CONCLUSIONS AND CLINICAL RELEVANCE Potentially therapeutic concentrations of ampicillin were achieved in regional serum and SYN samples; SYN concentrations remained at potentially therapeutic values for > 12 hours following RIVP of 1.5 g of ampicillin-sulbactam in the hind limb of healthy cows.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate pharmacokinetic and pharmacodynamic characteristics of 3 doses of tapentadol hydrochloride orally administered in dogs.

ANIMALS 6 healthy adult mixed-breed dogs.

PROCEDURES In a prospective, randomized crossover study, dogs were assigned to receive each of 3 doses of tapentadol (10, 20, and 30 mg/kg, PO); there was a 1-week washout period between subsequent administrations. Plasma concentrations and physiologic variables were measured for 24 hours. Samples were analyzed by use of high-performance liquid chromatography–tandem mass spectrometry.

RESULTS Tapentadol was rapidly absorbed after oral administration. Mean maximum plasma concentrations after 10, 20, and 30 mg/kg were 10.2, 19.7, and 31 ng/mL, respectively. Geometric mean plasma half-life of the terminal phase after tapentadol administration at 10, 20, and 30 mg/kg was 3.5 hours (range, 2.7 to 4.5 hours), 3.7 hours (range, 3.1 to 4.0 hours), and 3.7 hours (range, 2.8 to 6.5 hours), respectively. Tapentadol and its 3 quantified metabolites (tapentadol sulfate, tapentadol-O-glucuronide, and desmethyltapentadol) were detected in all dogs and constituted 0.16%, 2.8%, 97%, and 0.04% of the total area under the concentration-time curve (AUC), respectively. Plasma AUCs for tapentadol, tapentadol sulfate, and tapentadol-O-glucuronide increased in a dose-dependent manner. Desmethyltapentadol AUC did not increase in a linear manner at the 30-mg/kg dose. Sedation scores and heart and respiratory rates were not significantly affected by dose or time after administration.

CONCLUSIONS AND CLINICAL RELEVANCE Oral administration of tapentadol was tolerated well, and the drug was rapidly absorbed. Adverse events were not apparent in any dogs at any doses in this study.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To describe the pharmacokinetics of morphine, lidocaine, and ketamine associated with IV administration of a constant rate infusion (CRI) of a morphine-lidocaine-ketamine (MLK) combination to calves undergoing umbilical herniorrhaphy.

ANIMALS

20 weaned Holstein calves with umbilical hernias.

PROCEDURES

Calves were randomly assigned to receive a CRI of an MLK solution (0.11 mL/kg/h; morphine, 4.8 μg/kg/h; lidocaine, 2.1 mg/kg/h; and ketamine, 0.42 mg/kg/h) for 24 hours (MLK group) or 2 doses of flunixin meglumine (1.1 mg/kg, IV, q 24 h) and a CRI of saline (0.9% NaCl) solution (0.11 mL/kg/h) for 24 hours (control group). For all calves, the CRI was begun after anesthesia induction. Blood samples were obtained immediately before and at predetermined times for 120 hours after initiation of the assigned treatment. Noncompartmental analysis was used to estimate pharmacokinetic parameters for the MLK group.

RESULTS

During the CRI, steady-state serum concentrations were achieved for lidocaine and ketamine, but not morphine. Mean terminal half-life was 4.1, 0.98, and 1.55 hours and area under the concentration-time curve was 41, 14,494, and 7,426 h•μg/mL for morphine, lidocaine, and ketamine, respectively. After the CRI, the mean serum drug concentration at steady state was 6.3, 616.7, and 328 ng/mL for morphine, lidocaine, and ketamine, respectively.

CONCLUSIONS AND CLINICAL RELEVANCE

During the CRI of the MLK solution, steady-state serum concentrations were achieved for lidocaine and ketamine, but not morphine, likely owing to the fairly long half-life of morphine. Kinetic analyses of MLK infusions in cattle are necessary to establish optimal dosing protocols.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To assess the analgesic efficacy of an IV constant rate infusion (CRI) of a morphine-lidocaine-ketamine (MLK) combination in calves undergoing umbilical herniorrhaphy.

ANIMALS

20 weaned Holstein calves with umbilical hernias.

PROCEDURES

Calves were randomly assigned to receive a CRI of an MLK solution (0.11 mL/kg/h; morphine, 4.8 μg/kg/h; lidocaine, 2.1 mg/kg/h; and ketamine, 0.42 mg/kg/h) for 24 hours (MLK group) or 2 doses of flunixin meglumine (1.1 mg/kg, IV, q 24 h) and a CRI of saline (0.9% NaCl) solution (0.11 mL/kg/h) for 24 hours (control group). The assigned CRI was begun after anesthesia induction. A pain-scoring system and incisional algometry were used to assess pain, and blood samples were obtained to measure serum cortisol concentration at predetermined times for 120 hours after CRI initiation.

RESULTS

Mean pain scores did not differ significantly between the MLK and control groups at any time. Mean algometry score for the MLK group was significantly greater (calves were less responsive to pressure) than that for the control group at 4 hours after CRI initiation. Mean cortisol concentration decreased over time for both groups and was significantly greater for the MLK group than the control group at 1, 4, and 18 hours after CRI initiation.

CONCLUSIONS AND CLINICAL RELEVANCE

A CRI of MLK provided adequate postoperative analgesia to calves that underwent umbilical herniorrhaphy. However, the technical support required for CRI administration limits its use to hospital settings. Kinetic analyses of MLK infusions in cattle are necessary to establish optimal dosing protocols and withdrawal intervals.

Full access
in American Journal of Veterinary Research