Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: Jan S. Suchodolski x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To test the hypothesis that intestinal pathologic changes are often concurrent with gastric pathologic changes in dogs and to characterize the historical, physical, clinicopathologic, imaging, and endoscopic findings in dogs with gastric histopathologic abnormalities.

Design—Retrospective case series.

Animals—67 dogs with gastric histopathologic abnormalities.

Procedures—Medical records from dogs that had undergone gastrotomy, gastroduodenoscopy, or gastroscopy between September 2002 and September 2007 were identified. Dogs were included in the study when histopathologic abnormalities were detected during evaluation of gastric tissue sections. History, clinical examination findings, results of diagnostic tests, diagnoses, treatments, and outcome were recorded for each dog.

Results—67 dogs with gastric histopathologic abnormalities were included in the study. The most frequent clinical sign recorded was vomiting (36/67 [53.7%] dogs). The most common biochemical abnormality recorded was panhypoproteinemia (27/64 [42.2%] dogs). Lymphoplasmacytic gastritis was the most frequent histopathologic finding recorded (34/67 [50.7%] dogs). For dogs in which both intestinal biopsy specimens and gastric biopsy specimens were collected, concurrent pathologic changes were recorded in 43 of 60 (71.7%) dogs.

Conclusions and Clinical Relevance—Results of this study suggested that intestinal pathologic changes are commonly concurrent in dogs with gastric pathologic changes. This supports the practice of collecting both gastric and duodenal biopsy specimens every time gastroduodenoscopy is performed. Lymphoplasmacytic gastritis was the most commonly recorded gastric histopathologic finding and was often of minimal or mild severity.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To develop and analytically validate a radioimmunoassay (RIA) for the quantification of canine calprotectin (cCP) in serum and fecal extracts of dogs.

Sample Population—Serum samples (n = 50) and fecal samples (30) were obtained from healthy dogs of various breeds and ages.

Procedures—A competitive, liquid-phase, double-antibody RIA was developed and analytically validated by assessing analytic sensitivity, working range, linearity, accuracy, precision, and reproducibility. Reference intervals for serum and fecal cCP concentrations were determined.

Results—Sensitivity and upper limit of the working range were 29 and 12,774 μg/L for serum and 2.9 and 1,277.4 μg/g for fecal extracts, respectively. Observed-to-expected ratios for serial dilutions of 6 serum samples and 6 fecal extracts ranged from 95.3% to 138.2% and from 80.9% to 118.1%, respectively. Observed-to-expected ratios for spiking recovery for 6 serum samples and 6 fecal extracts ranged from 84.6% to 121.5% and from 80.3% to 132.1%, respectively. Coefficients of variation for intra-assay and interassay variability were < 3.9% and < 8.7% for 6 serum samples and < 8.5% and < 12.6% for 6 fecal extracts, respectively. Reference intervals were 92 to 1,121 μg of cCP/L for serum and < 2.9 to 137.5 μg of cCP/g for fecal extracts.

Conclusions and Clinical Relevance—The RIA described here was analytically sensitive, linear, accurate, precise, and reproducible for the quantification of cCP in serum and fecal extracts. This assay should facilitate research into the clinical use of serum and fecal cCP measurements in dogs with inflammatory bowel disease.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether hypertriglyceridemia in healthy Miniature Schnauzers is associated with high serum liver enzyme activities.

Design—Cross-sectional study.

Animals—65 Miniature Schnauzers with serum triglyceride concentrations within the reference range (group 1), 20 Miniature Schnauzers with slightly high serum triglyceride concentrations (group 2), and 20 Miniature Schnauzers with moderately to severely high serum triglyceride concentrations (group 3).

Procedures—Questionnaires regarding each dog's medical history were completed, and serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and G-glutamyltransferase (GGT) activities were measured.

Results—Median serum ALP activity was significantly higher in group 3 than in group 1 or 2 dogs, but was not significantly higher in group 2 than in group 1 dogs. Median serum ALT activity was significantly higher in group 3 than in group 1 dogs, but was not significantly different between any of the other groups. Compared with group 1 dogs, group 2 and 3 dogs were significantly more likely to have high serum ALP activity (odds ratio, 26.2 and 192.6, respectively). Group 3 dogs also were significantly more likely to have high serum ALT activity (odds ratio, 8.0), serum AST activity (odds ratio, 3.7), and serum GGT activity (odds ratio, 11.3), compared with group 1 dogs. Group 3 dogs were significantly more likely (odds ratio, 31.0) to have ≥ 2 high serum liver enzyme activities than were group 1 dogs.

Conclusions and Clinical Relevance—Results suggested that moderate to severe hypertriglyceridemia was associated with high serum liver enzyme activities in Miniature Schnauzers.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate the qualitative variation in bacterial microflora among compartments of the intestinal tract of dogs by use of a molecular fingerprinting technique.

Animals—14 dogs (similarly housed and fed identical diets).

Procedure—Samples of intestinal contents were collected from the duodenum, jejunum, ileum, colon, and rectum of each dog. Bacterial DNA was extracted from the samples, and the variable V6 to V8 region of 16S ribosomal DNA (gene coding for 16S ribosomal RNA) was amplified by use of universal bacterial primers; polymerase chain reaction amplicons were separated via denaturing gradient gel electrophoresis (DGGE). Similarity indices of DGGE banding patterns were used to assess variation in the bacterial microflora among different compartments of the intestine within and among dogs. Bacterial diversity was assessed by calculating the Simpson diversity index, the Shannon-Weaver diversity index, and evenness.

Results—DGGE profiles indicated marked differences in bacterial composition of intestinal compartments among dogs (range of similarity, 25.6% to 36.6%) and considerable variation among compartments within individual dogs (range of similarity, 36.7% to 57.9%). Similarities between neighboring intestinal compartments were significantly greater than those between non-neighboring compartments. Diversity indices for the colon and rectum were significantly higher than those of the duodenum, jejunum, and ileum.

Conclusions and Clinical Relevance—Results indicated that the different intestinal compartments of individual dogs appear to host different bacterial populations, and these compartmental populations vary among dogs. In dogs, fecal sample analysis may not yield accurate information regarding the composition of bacterial populations in compartments of the gastrointestinal tract. (Am J Vet Res 2005;66:1556–1562)

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To elucidate the relationship between plasma ammonia concentration and severity of hepatic encephalopathy and determine whether factors that precipitate hepatic encephalopathy in humans are associated with the presence of clinical signs of hepatic encephalopathy in dogs previously treated for the disease.

Design—Retrospective case series.

Animals—118 dogs with hepatic encephalopathy.

Procedures—The medical records database of a veterinary teaching hospital was searched for records of dogs in which hepatic encephalopathy was diagnosed between October 1, 1991, and September 1, 2014. Hepatic encephalopathy severity was graded on a 5-point scale, and the correlation between disease severity and plasma ammonia concentration was determined. Respective associations between hepatic encephalopathy and systemic inflammatory response syndrome, gastrointestinal hemorrhage, dietary indiscretion, constipation, furosemide treatment, azotemia, hypokalemia, hyponatremia, alkalosis, and hyperammonemia were assessed by Fisher exact tests followed by multivariable logistic regression.

Results—Severity of hepatic encephalopathy at hospital admission was not significantly correlated with plasma ammonia concentration. Dogs treated for hepatic encephalopathy prior to hospital admission were significantly less likely to have clinical signs of the disease at hospital admission, compared with dogs that were not treated for the disease (OR, 0.36; 95% confidence interval, 0.17 to 0.78). None of the putative precipitating factors for hepatic encephalopathy were significantly associated with the presence of clinical signs of the disease at hospital admission.

Conclusions and Clinical Relevance—Results indicated that hepatic encephalopathy treatment alleviated clinical signs of the disease. Further investigation is necessary to identify precipitating factors for hepatic encephalopathy in dogs. (J Am Vet Med Assoc 2015;247:176–183)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine the optimal sample handling and processing conditions for the carbon 13 (13C)-labeled aminopyrine demethylation blood test (ADBT; phase 1) and determine the reference range for test results (phase 2) in apparently healthy dogs.

Animals—44 apparently healthy dogs (phase 1, 19 dogs; phase 2, 44 dogs).

Procedures—In phase 1, a blood sample from each dog was collected before and 45 minutes after (day 0) IV administration of 13C-labeled aminopyrine (2 mg/kg); aliquots were immediately transferred into tubes containing sodium heparin and hydrochloric acid (samples A and B), sodium heparin alone (samples C, D, and E), or sodium fluoride (sample F). Hydrochloric acid was added to samples C through F at days 7, 14, 21, and 21, respectively. The baseline and 45-minute samples' absolute 13C:12C ratios were determined via fractional mass spectrometry on day 0 (control sample A) or 21 (samples B through F) and used to calculate the percentage dose of 13C recovered in CO2 extracted from samples (PCD). In phase 2, blood samples from each dog were collected into tubes containing sodium fluoride and processed within 3 weeks.

Results—Compared with the control sample value, PCDs for samples C through E differed significantly, whereas PCD in sample F did not. The 13C-ADBT–derived PCD reference range (central 95th percentile) for apparently healthy dogs was 0.08% to 0.2%.

Conclusions and Clinical Relevance—Glycolytic CO2 production in canine blood samples collected during 13C-ADBTs was sufficiently inhibited by sodium fluoride to allow delayed sample analysis and avoid transportation of hydrochloric acid–treated samples.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether hypertriglyceridemia in Miniature Schnauzers is associated with insulin resistance.

Design—Case-control study.

Animals—28 Miniature Schnauzers with hypertriglyceridemia and 31 Miniature Schnauzers for which serum triglyceride concentrations were within the reference range (control dogs).

Procedures—All dogs had no history of chronic disease, were free of clinical signs for at least 3 months prior to blood collection, and were not receiving any medications known to affect lipid metabolism or serum insulin concentration. Food was withheld from each dog for ≥ 12 hours; a 5- to 10-mL blood sample was collected and allowed to clot to obtain serum. Serum insulin and glucose concentrations were measured, and the homeostasis model assessment (HOMA) score was calculated (ie, [basal serum insulin concentration {mU/L} × basal serum glucose concentration {mmol/L}]/22.5).

Results—Median serum insulin concentration was significantly higher in hypertriglyceridemic Miniature Schnauzers (21.3 mU/L) than it was in control dogs (12.5 mU/L). The percentage of dogs with high serum insulin concentrations was significantly greater in the hypertriglyceridemic group (28.6%) than it was in the control group (6.5%; odds ratio, 5.8; 95% confidence interval, 1.1 to 30.2). Median HOMA score for hypertriglyceridemic Miniature Schnauzers (4.9) was significantly higher than that for control dogs (2.8).

Conclusions and Clinical Relevance—Results indicated that hypertriglyceridemia in Miniature Schnauzers is often associated with insulin resistance. Further studies are needed to determine the prevalence and clinical importance of insulin resistance in hypertriglyceridemic Miniature Schnauzers.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To purify neutrophil elastase (NE) from dog blood and develop and validate an ELISA for the measurement of canine NE (cNE) in canine serum as a marker for gastrointestinal tract inflammation.

Sample Population—Neutrophils from 6 dogs immediately after they were euthanatized and serum from 54 healthy dogs.

Procedures—cNE was purified from blood by use of dextran sedimentation, repeated cycles of freezing-thawing and sonication, cation-exchange chromatography, and continuous elution electrophoresis. Antibodies against cNE were generated in rabbits, and an ELISA was developed and validated by determination of sensitivity, dilutional parallelism, spiking recovery, intra-assay variability, and interassay variability. A reference range was established by assaying serum samples from the 54 healthy dogs and by use of the lower 97.5th percentile.

Results—cNE was successfully purified from blood, and antibodies were successfully generated in rabbits. An ELISA was developed with a sensitivity of 1,100 μg/L. The reference range was established as < 2,239 μg/L. Ratios of observed-to-expected results for dilutional parallelism for 4 serum samples ranged from 85.4% to 123.1%. Accuracy, as determined by spiking recovery, ranged from 27.1% to 114.0%. Coefficient of variation for 4 serum samples was 14.2%, 16.0%, 16.8%, and 13.4%, respectively, for intra-assay variability and 15.4%, 15.0%, 10.5%, and 14.6%, respectively, for interassay variability.

Conclusions and Clinical Relevance—The purification protocol used here resulted in rapid and reproducible purification of cNE with a high yield. The novel ELISA yielded linear results and was accurate and precise. Additional studies are needed to evaluate the clinical usefulness of this assay.

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To purify and partially characterize feline pepsinogen (fPG) from the gastric mucosa and compare fPG with PGs of other species.

Sample Population—Stomachs of 6 cats.

Procedure—A crude protein extract was prepared from the gastric mucosa of feline stomachs. Feline PG A was purified by ammonium sulfate precipitation, weak-anion-exchange chromatography, size-exclusion chromatography, and strong-anion exchange chromatography. Partial characterization consisted of estimation of molecular weights (MWs) and isoelectric points, N-terminal amino acid sequencing, and investigation of susceptibility to pepstatin inhibition.

Results—Several fPG A-group isoforms were identified. The MWs of the isoforms ranged from 37,000 to 44,820. Isoelectric points were all < pH 3.0. The proteolytic activity of the activated PGs was inhibited completely by pepstatin in a range of equimolar to 10- fold molar excess. The specific absorbance of fPG A was 1.29. The N-terminal amino acid sequence of the first 25 residues of the predominant fPG A7 had 75%, 72%, 64%, and 56% homology with PG A of dogs, rabbits, cattle, and humans, respectively. Sequences of 4 other fPG A-group isoforms were similar to fPG A7. All isoforms were immunologically cross-reactive with sheep anti-fPG A7 antiserum.

Conclusions and Clinical Relevance—PG A is the only identified type of PG in cats and, similar to pg in other species, comprises multiple isoforms. The availability of fPG A may be used to facilitate the development of an immunoassay to quantify serum fPG A as a potential marker for gastric disorders in cats. (Am J Vet Res 2004;65:1195–1199)

Restricted access
in American Journal of Veterinary Research

Abstract

Objective—To determine the prevalence of hypocobalaminemia or methylmalonic acidemia (or both) in dogs with chronic gastrointestinal disease.

Sample—Serum samples from 56 dogs with chronic gastrointestinal disease and 43 control dogs.

Procedures—Serum cobalamin and methylmalonic acid (MMA) concentrations were measured in all samples and compared between groups. A correlation between serum cobalamin and MMA concentrations and the canine chronic enteropathy clinical activity index was evaluated via the Spearman rank correlation.

Results—20 of 56 (36%) dogs with gastrointestinal disease had hypocobalaminemia. Serum cobalamin concentrations were significantly lower in dogs with gastrointestinal disease than in control dogs. Five of 56 (9%) dogs with chronic gastrointestinal disease and 5 of 20 (25%) hypocobalaminemic dogs had increased MMA concentrations. There was a significant negative correlation (Spearman r = −0.450) between serum cobalamin and MMA concentrations in dogs with gastrointestinal disease. No correlation was found between the canine chronic enteropathy clinical activity index and serum cobalamin or MMA concentrations.

Conclusions and Clinical Relevance—These data indicated the prevalence of hypocobalaminemia in dogs with chronic gastrointestinal disease was 20 of 56 (36%). Five of 20 (25%) hypocobalaminemic dogs had increased serum MMA concentrations, which indicated that although hypocobalaminemia was common in these dogs, it did not always appear to be associated with a deficiency of cobalamin on a cellular level. Hypocobalaminemia is a risk factor for negative outcome in dogs with chronic gastrointestinal disease and should be considered in every patient with corresponding clinical signs.

Restricted access
in American Journal of Veterinary Research