Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: James K. Collins x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine efficacy and safety of a commercial modified-live canine distemper virus (CDV) vaccine used for prophylaxis in domestic ferrets.

Animals—Sixteen 16-week-old neutered male ferrets.

Procedures— Equal groups of ferrets were inoculated subcutaneously at 16 and 20 weeks of age with saline (0.9% NaCl) solution or a vaccine derived from the Onderstepoort CDV strain and attenuated in a primate cell line. Live virulent CDV was administered to all ferrets intranasally and orally 3 weeks after the second inoculation. Clinical signs and body weights were monitored regularly during the study. Blood samples for serologic examination were drawn prior to each inoculation, before challenge exposure, and 10, 15, and 21 days after exposure. Blood samples for reverse transcriptase polymerase chain reaction (RT-PCR) were obtained 5 days after the first vaccination, and 5, 10, 15, and 21 days after challenge exposure.

Results—After challenge exposure, control ferrets had significantly more clinical signs and weight loss, compared with vaccinates. All vaccinated ferrets survived, whereas all control ferrets died. The RT-PCR assay was successful in detecting CDV in blood and fresh or formalin-fixed tissues from infected ferrets.

Conclusions and Clinical Relevance—Findings suggest that the vaccine when given SC to domestic ferrets as directed is safe and protective against challenge exposure with virulent CDV. The RT-PCR assay may simplify detection of CDV in fresh and fixed tissues. (Am J Vet Res 2001;62:736–740)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the effect of experimental infection with bovine viral diarrhea virus (BVDV) on llamas and their fetuses, evaluate seroprevalence of BVDV in llamas and alpacas, and genetically characterize BVDV isolates from llamas.

Design—Prospective study.

Animals—4 pregnant llamas for the experimental infection study and 223 llamas and alpacas for the seroprevalence study.

Procedure—Llamas (seronegative to BVDV) were experimentally infected with a llama isolate of BVDV via nasal aerosolization. After inoculation, blood samples were collected every other day for 2 weeks; blood samples were obtained from crias at birth and monthly thereafter. For the seroprevalence study, blood was collected from a convenience sample of 223 camelids. Isolates of BVDV were characterized by reverse transcription- polymerase chain reaction assay.

Results—Viremia and BVDV-specific antibody response were detected in the experimentally infected llamas, but no signs of disease were observed. No virus was detected in the crias or aborted fetus, although antibodies were evident in crias after colostrum consumption. Seroprevalence to BVDV was 0.9% in llamas and alpacas. Sequences of the llama BVDV isolates were comparable to known bovine isolates.

Conclusions and Clinical Relevance—Findings suggest that llamas may be infected with BVDV but have few or no clinical signs. Inoculation of llamas during gestation did not result in fetal infection or persistent BVDV infection of crias. Seroprevalence to BVDV in llamas and alpacas is apparently low. The most likely source for BVDV infection in camelids may be cattle. (J Am Vet Med Assoc 2003;223:223–228)

Full access
in Journal of the American Veterinary Medical Association

Objective

To determine the value of virus isolation (VI), immunofluorescent antibody (IFA) assay, serum neutralization (SN), and ELISA for the diagnosis of clinical feline herpesvirus-1 (FHV-1) infection in cats.

Animals

46 clinically normal cats, 17 cats with signs of acute respiratory tract disease, and 38 cats with signs of chronic ocular disease.

Procedure

Conjunctival swabs for VI, conjunctival scrapings for IFA testing, and venous blood samples for SN or ELISA testing were obtained from all cats.

Results

FHV-1 was detected in 10.9 and 28.3% of clinically normal cats and in 18.2 and 33.3% of cats with FHV-1-associated disease by VI and the IFA assay, respectively. There were no significant differences in the viral detection rate between cats with acute respiratory tract disease and cats with chronic ocular disease or between diseased cats and clinically normal cats; however, FHV-1 was never detected by both methods in clinically normal cats. Overall FHV-1 seroprevalence was 97% when tested by ELISA and 66% when tested by SN. Seroprevalence did not vary significantly among the 3 groups for either serologic test. Magnitude of SN and ELISA titers varied greatly but independently of presence or absence of clinical signs of FHV-1-associated disease. Sensitivity, specificity, and positive and negative predictive values were assessed for VI and the IFA assay—jointly and individually—and for each SN and ELISA titer magnitude. Values never all exceeded 50%.

Clinical Implications

Because FHV-1 can be detected commonly in clinically normal cats by the IFA assay or VI, neither test appears to aid in the clinical diagnosis of FHV-1 infection. Seroprevalence does not appear to vary between affected and clinically normal cats. SN, ELISA, VI, and the IFA assay appear to be of limited value in the diagnosis of FHV-1-associated disease in cats. Concurrent assessment of the IFA assay and VI results may permit exclusion of FHV-1 as an etiologic agent if results of both tests are negative. (J Am Vet Med Assoc 1999;214:502–507)

Free access
in Journal of the American Veterinary Medical Association

Objective

To develop a system to monitor and detect acute infections of the upper respiratory tract (ie, nares, nasopharynx, and pharynx) in horses and to assess the association among specific viral infections, risk factors, and clinical signs of disease.

Design

Prospective study.

Animals

151 horses with clinical signs of acute infectious upper respiratory tract disease (IURD) from 56 premises in Colorado.

Procedure

Health management data, blood samples, and nasal or nasopharyngeal swab samples were obtained for 151 horses with clinical signs of acute IUBD. Of these horses, 112 had an additional blood sample obtained during convalescence and were considered to have complete sample sets. Samples were tested for evidence of respiratory tract infection by use of ELISA, virus isolation, and serologic testing of paired serum samples.

Results

Viral infections were identified in 65 horses with complete sample sets; influenza virus infection was identified in 43 horses, equine herpesvirus (EHV) infection in 18, and mixed influenza virus and EHV infections in 4. On 14 premises, samples were obtained from more than 1 affected horse. Viral infections were identified in horses on 11 of 14 premises. Equine herpesviruses were isolated from 10 horses. A relationship was not found between vaccination history and identification of EHV or influenza virus infections. An infection with EHV was less likely to be identified in horses with initial (acute) antibody titers > 1:16 to EHV.

Clinical Implications

Influenza virus (specifically, A/equine/2) was the most common virus associated with acute IURD. Use of multiple diagnostic tests and obtaining samples from more than 1 horse in an outbreak may improve detection of viral infections. (J Am Vet Med Assoc 1998;213:385-390)

Free access
in Journal of the American Veterinary Medical Association

SUMMARY

Intraocular production of Toxoplasma gondii-specific antibody in cats has been estimated by comparing the ratio of T gondii-specific antibody in aqueous humor and serum with the ratio of total immunoglobulins in serum and aqueous humor (Goldmann-Witmer coefficient; aqueous antibody coefficient; C value). It has been proposed that in human beings, comparison of the ratio of T gondii-specific antibody in aqueous humor and serum with the ratio of antibodies against a nonocular pathogen in serum and aqueous humor is more accurate than methods using total immunoglobulin quantification. We developed an elisa for detection of calicivirus-specific antibodies in the serum and aqueous humor of cats. By evaluating calicivirus-specific antibody concentrations in the aqueous humor of healthy and diseased cats, calicivirus was assessed as a nonintraocular pathogen. The ratio of T gondii-specific antibodies in the aqueous humor and serum and the ratio of calicivirus-specific antibodies in serum and aqueous humor were evaluated as a means of estimating intraocular T gondii-specific antibody production.

A field strain of feline calicivirus was isolated, cultured, and purified. A calicivirus-specific IgG elisa was developed for detection of feline calicivirus-specific IgG in serum and aqueous humor. Calicivirus-specific IgG was measured in the serum and aqueous humor from 3 groups of control cats. Results suggested that calicivirus is a nonintraocular pathogen in cats and that calicivirus IgG detected in aqueous humor is attributable to leakage across a damaged blood-ocular barrier.

Intraocular production of T gondii-specific antibodies was estimated, using 2 formulas. The C value was calculated by multiplying the ratio of T gondii-specific IgM or IgG in aqueous humor and serum by the ratio of total immunoglobulins (using the corresponding IgM or IgG class) in serum and aqueous humor. The C tc value (Toxoplasma-calicivirus Goldmann-Witmer coefficient) was calculated by multiplying the ratio of T gondii-specific IgM or IgG in aqueous humor and serum by the ratio of calicivirus-specific IgG in serum and aqueous humor.

Serum and aqueous humor samples were obtained from 41 client-owned cats with uveitis, and T gondii-specific C values and Ctc values were calculated. Toxoplasma gondii-specific IgM or IgG C values of 10 or greater or T gondii-specific IgM or IgG Ctc values of 1 or greater were considered to be suggestive of intraocular T gondii-specific antibody production. Of the 41 cats, 20 (48.7%) had evidence of intraocular production of T gondii-specific antibody on the basis of either an IgM or IgG C value of 10 or greater. A Ctc value could not be calculated in 3 cats because calicivirus-specific IgG was not present in aqueous humor. Of the 38 cats for which Ctc values could be calculated, 25 (65.8 %) had evidence of intraocular production of T gondii-specific antibody on the basis of either an IgM or IgG Ctc value of 1 or greater. The C values and Ctc values were in agreement for 75.9 % of IgM containing samples and 75% of IgG containing samples. Sensitivity, specificity, predictive value of a positive test result, and predictive value of a negative test result for an IgM or IgG C value, when compared with the corresponding IgM or IgG Ctc value were determined. The results indicate that use of the C value for estimation of intraocular T gondii-specific antibody production will result in 28.6 (IgM) to 50 % (IgG) false-negative results and 12.5% (IgM and IgG) false-positive results, when compared with the Ctc value.

Free access
in American Journal of Veterinary Research

Summary

Serologic evidence of infection by Toxoplasma gondii, feline leukemia virus, feline coronaviruses, or feline immunodeficiency virus (fiv) is commonly found in cats with uveitis. Serum samples from 124 cats with uveitis were assayed by use of elisa for the detection of T gondii-specific immunoglobulin M (IgM), IgG, and circulating antigens (Ag), as well as an elisa for feline leukemia virus Ag, an elisa for antibodies to fiv, and an indirect fluorescent antibody assay for antibodies to feline coronaviruses. Serologic evidence of infection by 1 or more of the infectious agents was detected in 83.1% of the samples. Serologic evidence of T gondii infection, defined as the detection of T gondii-specific IgM, IgG, or Ag in serum, was found in 74.2% of the samples. The seroprevalence of T gondii infection was significantly greater in cats with uveitis than in healthy cats from a similar geographic area. Serum samples from cats with serologic evidence of both T gondii and fiv infections were more likely to contain T gondii-specific IgM without IgG than samples from cats with serologic evidence of T gondii infection alone. Cats with serologic evidence of fiv and T gondii coinfection had a higher T gondii-specific IgM titer geometric mean and a lower T gondii-specific IgG titer geometric mean than did cats with serologic evidence of T gondii infection alone. Serologic evaluation for T gondii infection should include assays that detect IgM, IgG, and Ag, particularly in cats coinfected with fiv.

Free access
in Journal of the American Veterinary Medical Association

Summary

Approximately 10 of 100 young heifers that had recently delivered their first calf—members of a large Colorado dairy herd—had a syndrome of swollen teats and distal portions of the hind limbs, prefemoral lymphadenopathy, transient fever, rough coat, decreased milk production, and subsequent weight loss and reproductive inefficiency. Acute clinical signs of disease were associated with large numbers of Eperythrozoon wenyonii seen on blood smears, and resolution of signs correlated with reduction or disappearance of the parasite. Other known causes of peripheral edema could not be documented. The parasite was transmitted to 4 of 7 nonlactating dairy cows destined to be culled and a splenectomized calf via IV inoculation of blood from parasitemic heifers, but clinical signs of infection were not induced.

Free access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To monitor ovine herpesvirus type 2 (OvHV-2) infection status and the association between OvHV-2 infection and development of clinical signs of malignant catarrhal fever (MCF) in cattle.

Design—Longitudinal study.

Animals—30 mature adult cows and 18 cattle submitted for necropsy.

Procedure—Blood and milk samples were collected at monthly intervals from 30 adult cows for 20 consecutive months. Nasal and ocular swab specimens were also collected during months 9 through 20. Polymerase chain reaction (PCR) assay for detection of OvHV-2 was performed on blood, milk, nasal swab, and ocular swab specimens. Competitive inhibition ELISA (CI-ELISA) for detection of antibodies against MCF viruses was performed on serum samples obtained prior to study initiation and monthly during the last 12 months. Tissues obtained from herdmates without clinical signs of MCF that were submitted for necropsy were analyzed for OvHV-2 DNA via PCR assay for possible sites of latency.

Results—Initially, 8 of 30 cows had positive CI-ELISA results. Seroconversion was detected in 4 cows. Ovine herpesvirus type 2 DNA was intermittently detected in blood, milk, nasal secretions, or ocular secretions from 17 of 30 cows. Twenty-one cows had positive CI-ELISA or PCR assay results. No cattle in the study developed clinical signs of MCF. Results of PCR assays performed on tissue samples from 2 of 18 animals submitted for necropsy were positive for OvHV-2.

Conclusions and Clinical Relevance—OvHV-2 infection can occur in cattle without concurrent development of clinical MCF. Ovine herpesvirus type 2 DNA was detected intermittently, suggesting fluctuating viral DNA loads or reinfection in subclinical cattle. A definitive site of latency was not identified from tissues obtained during necropsy. (J Am Vet Med Assoc 2005;227:606–611)

Full access
in Journal of the American Veterinary Medical Association