Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: James K. Collins x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the effect of experimental infection with bovine viral diarrhea virus (BVDV) on llamas and their fetuses, evaluate seroprevalence of BVDV in llamas and alpacas, and genetically characterize BVDV isolates from llamas.

Design—Prospective study.

Animals—4 pregnant llamas for the experimental infection study and 223 llamas and alpacas for the seroprevalence study.

Procedure—Llamas (seronegative to BVDV) were experimentally infected with a llama isolate of BVDV via nasal aerosolization. After inoculation, blood samples were collected every other day for 2 weeks; blood samples were obtained from crias at birth and monthly thereafter. For the seroprevalence study, blood was collected from a convenience sample of 223 camelids. Isolates of BVDV were characterized by reverse transcription- polymerase chain reaction assay.

Results—Viremia and BVDV-specific antibody response were detected in the experimentally infected llamas, but no signs of disease were observed. No virus was detected in the crias or aborted fetus, although antibodies were evident in crias after colostrum consumption. Seroprevalence to BVDV was 0.9% in llamas and alpacas. Sequences of the llama BVDV isolates were comparable to known bovine isolates.

Conclusions and Clinical Relevance—Findings suggest that llamas may be infected with BVDV but have few or no clinical signs. Inoculation of llamas during gestation did not result in fetal infection or persistent BVDV infection of crias. Seroprevalence to BVDV in llamas and alpacas is apparently low. The most likely source for BVDV infection in camelids may be cattle. (J Am Vet Med Assoc 2003;223:223–228)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine efficacy and safety of a commercial modified-live canine distemper virus (CDV) vaccine used for prophylaxis in domestic ferrets.

Animals—Sixteen 16-week-old neutered male ferrets.

Procedures— Equal groups of ferrets were inoculated subcutaneously at 16 and 20 weeks of age with saline (0.9% NaCl) solution or a vaccine derived from the Onderstepoort CDV strain and attenuated in a primate cell line. Live virulent CDV was administered to all ferrets intranasally and orally 3 weeks after the second inoculation. Clinical signs and body weights were monitored regularly during the study. Blood samples for serologic examination were drawn prior to each inoculation, before challenge exposure, and 10, 15, and 21 days after exposure. Blood samples for reverse transcriptase polymerase chain reaction (RT-PCR) were obtained 5 days after the first vaccination, and 5, 10, 15, and 21 days after challenge exposure.

Results—After challenge exposure, control ferrets had significantly more clinical signs and weight loss, compared with vaccinates. All vaccinated ferrets survived, whereas all control ferrets died. The RT-PCR assay was successful in detecting CDV in blood and fresh or formalin-fixed tissues from infected ferrets.

Conclusions and Clinical Relevance—Findings suggest that the vaccine when given SC to domestic ferrets as directed is safe and protective against challenge exposure with virulent CDV. The RT-PCR assay may simplify detection of CDV in fresh and fixed tissues. (Am J Vet Res 2001;62:736–740)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To monitor ovine herpesvirus type 2 (OvHV-2) infection status and the association between OvHV-2 infection and development of clinical signs of malignant catarrhal fever (MCF) in cattle.

Design—Longitudinal study.

Animals—30 mature adult cows and 18 cattle submitted for necropsy.

Procedure—Blood and milk samples were collected at monthly intervals from 30 adult cows for 20 consecutive months. Nasal and ocular swab specimens were also collected during months 9 through 20. Polymerase chain reaction (PCR) assay for detection of OvHV-2 was performed on blood, milk, nasal swab, and ocular swab specimens. Competitive inhibition ELISA (CI-ELISA) for detection of antibodies against MCF viruses was performed on serum samples obtained prior to study initiation and monthly during the last 12 months. Tissues obtained from herdmates without clinical signs of MCF that were submitted for necropsy were analyzed for OvHV-2 DNA via PCR assay for possible sites of latency.

Results—Initially, 8 of 30 cows had positive CI-ELISA results. Seroconversion was detected in 4 cows. Ovine herpesvirus type 2 DNA was intermittently detected in blood, milk, nasal secretions, or ocular secretions from 17 of 30 cows. Twenty-one cows had positive CI-ELISA or PCR assay results. No cattle in the study developed clinical signs of MCF. Results of PCR assays performed on tissue samples from 2 of 18 animals submitted for necropsy were positive for OvHV-2.

Conclusions and Clinical Relevance—OvHV-2 infection can occur in cattle without concurrent development of clinical MCF. Ovine herpesvirus type 2 DNA was detected intermittently, suggesting fluctuating viral DNA loads or reinfection in subclinical cattle. A definitive site of latency was not identified from tissues obtained during necropsy. (J Am Vet Med Assoc 2005;227:606–611)

Restricted access
in Journal of the American Veterinary Medical Association