Search Results
You are looking at 1 - 10 of 14 items for
- Author or Editor: James H. Jones x
- Refine by Access: All Content x
Abstract
OBJECTIVE To determine cardiorespiratory responses of Thoroughbreds to uphill and downhill locomotion on a treadmill at identical gradients.
ANIMALS 5 highly trained Thoroughbred geldings.
PROCEDURES Thoroughbreds were exercised for 2-minute intervals on a treadmill at 1.7, 3.5, 6.0, 8.0, and 10.0 m/s at a 4% incline, 0% incline (horizontal plane), and 4% decline in random order on different days. Stride frequency, stride length, and cardiopulmonary and O2-transport variables were measured and analyzed by means of repeated-measures ANOVA and Holm-Šidák pairwise comparisons.
RESULTS Horses completed all treadmill exercises with identical stride frequency and stride length. At identical uphill speeds, they had higher (vs horizontal) mass-specific O2 consumption (mean increase, 49%) and CO2 production (mean increase, 47%), cardiac output (mean increase, 21%), heart rate (mean increase, 11%), and Paco 2 (mean increase, 1.7 mm Hg), and lower Pao 2 (mean decrease, 5.8 mm Hg) and arterial O2 saturation (mean decrease, 1.0%); tidal volume was not higher. Downhill locomotion (vs horizontal) reduced mass-specific O2 consumption (mean decrease, 24%), CO2 production (mean decrease, 23%), and cardiac output (mean decrease, 9%). Absolute energy cost during uphill locomotion increased linearly with speed at approximately twice the rate at which it decreased during downhill locomotion.
CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that for Thoroughbreds, downhill locomotion resulted in a lower energy cost than did horizontal or uphill locomotion and that this cost changed with speed. Whether eccentric training induces skeletal muscle changes in horses similar to those in humans remains to be determined.
Abstract
Objective—To develop a protocol to induce and maintain gastric ulceration in horses and to determine whether gastric ulceration affects physiologic indices of performance during high-speed treadmill exercise.
Animals—20 healthy Thoroughbreds.
Procedures—Each horse was acclimatized to treadmill exercise during a 2-week period. Subsequently, baseline data were collected (day 0) and each horse began an incrementally increasing exercise training program (days 1 through 56). Beginning on day 14, horses were administered omeprazole (4 mg/kg, PO, q 24 h until day 56) or no drug (10 horses/group) and underwent alternating 24-hour periods of feeding and feed withholding for 10 days to induce gastric ulceration. Extent of gastric ulceration was assessed weekly thereafter via gastroscopy. Physiologic indices of performance were measured at days 0 and 56. Gastric ulceration and exercise performance indices were compared within and between groups.
Results—In untreated horses, gastric ulcers were induced and maintained through day 56. Gastric ulcer formation was prevented in omeprazole-treated horses. There were significant interactions between time (pre- and post-training data) and treatment (nonulcer and ulcer groups) for mass-specific maximal O2 consumption (
O
2max/Mb) and mass-specific maximal CO2 production (
CO
2max/Mb). Post hoc analysis revealed a difference between groups for
O
2max/Mb at day 56. Within-group differences for
O
2max/Mb and
CO
2max/Mb were detected for omeprazole-treated horses, but not for the horses with ulcers.
Conclusions and Clinical Relevance—In horses, gastric ulcers were induced and maintained by use of alternating periods of feeding and feed withholding in association with treadmill exercise (simulated racetrack training). Gastric ulcers adversely affected physiologic indices of performance in horses.
Abstract
Objective—To determine the influence of transportation by road and air on heart rate (HR) and HR variability (HRV) in horses.
Animals—6 healthy horses.
Procedures—ECG recordings were obtained from horses before (quarantine with stall rest [Q]; 24 hours) and during a journey that included transportation by road (RT; 4.5 hours), waiting on the ground in an air stall (W; 5.5 hours), and transportation by air (AT; 11 hours); HR was determined, and HRV indices of autonomic nervous activity (low-frequency [LF; 0.01 to 0.07 Hz] and high-frequency [HF; 0.07 to 0.6 Hz] power) were calculated.
Results—Mean ± SD HRs during Q, RT, W, and AT were 38.9 ± 1.5 beats/min, 41.7 ± 5.6 beats/min, 41.5 ± 4.3 beats/min, and 48.8 ± 5.6 beats/min, respectively; HR during AT was significantly higher than HR during Q. The LF power was significantly higher during Q (3,454 ± 1,087 milliseconds2) and AT (3,101 ± 567 milliseconds2) than it was during RT (1,824 ± 432 milliseconds2) and W (2,072 ± 616 milliseconds2). During Q, RT, W, and AT, neither HF powers (range, 509 to 927 milliseconds2) nor LF:HF ratios (range, 4.1 to 6.2) differed significantly. The HR during RT was highly correlated with LF power (R 2 = 0.979), and HR during AT was moderately correlated with the LF:HF ratio (R 2 = 0.477).
Conclusions and Clinical Relevance—In horses, HR and HRV indices during RT and AT differed, suggesting that exposure to different stressors results in different autonomic nervous influences on HR.
Abstract
Objective—To determine whether a full-body spandex garment would alter rectal temperatures of healthy dogs at rest in cool and warm environments.
Design—Prospective study.
Animals—10 healthy dogs.
Procedures—Each dog was evaluated at a low (20° to 25°C [68° to 77°F]) or high (30° to 35°C [86° to 95°F]) ambient temperature while wearing or not wearing a commercially available whole-body spandex garment designed for dogs. Oxygen consumption was measured by placing dogs in a flow-through indirect calorimeter for 90 to 120 minutes. Rectal temperature was measured before dogs were placed in the calorimeter and after they were removed.
Results—Rectal temperature increased significantly more at the higher ambient temperature than at the lower temperature and when dogs were not wearing the garment than when they were wearing it. The specific rate of oxygen consumption was significantly higher at the lower ambient temperature than at the higher temperature.
Conclusions and Clinical Relevance—Results suggest that wearing a snug spandex body garment does not increase the possibility that dogs will overheat while in moderate ambient temperatures. Instead, wearing such a garment may enable dogs to better maintain body temperature during moderate heat loading. These results suggest that such garments might be used for purposes such as wound or suture protection without causing dogs to overheat. (J Am Vet Med Assoc 2004;224:71–74)
Abstract
Objective—To determine prevalence of atrial fibrillation (AF) immediately after racing among racehorses that finished well behind the winners and examine potential risk factors for AF in these horses.
Design—Case-control study.
Animals—39,302 racehorses representing 404,090 race starts in races sanctioned by the Japan Racing Association between 1988 and 1997.
Procedure—Horses that finished ≥ 4 (turf races) or 5 (dirt races) seconds behind the winner or that did not complete the race were examined for AF within 5 minutes after the race. Logistic regression and χ 2 analyses were used to determine whether sex, age, race distance, race surface, year, or development of epistaxis was associated with development of AF.
Results—Estimated minimum frequency of AF was 0.03% (123 instances of AF following 404,090 race starts), and estimated minimum prevalence of AF among racehorses was 0.29% (115 horses with AF among 39,302 racehorses). Estimated frequency of AF among horses that finished slowly or did not finish was 1.39% (120 instances of AF among 8,639 examinations), and estimated prevalence of AF in horses that finished slowly was 1.23% (92 instances of AF among 7,500 horses) or 1.01% when only the first time a horse finished slowly was considered (76 instances of AF among 7,500 horses). Atrial fibrillation was paroxysmal in most horses. Among horses that finished slowly, 4-year-old and older horses and horses that raced on turf were more likely to develop AF.
Conclusions and Clinical Relevance—Results suggest that the likelihood of AF among racehorses that finish slowly is related to age and racing surface. (J Am Vet Med Assoc 2003;223:84–88)
Abstract
Objective—To determine the frequency of epistaxis during or after racing among racehorses and identify factors associated with development of epistaxis.
Design—Retrospective study.
Sample Population—247,564 Thoroughbred and 4,045 Anglo-Arab race starts.
Procedure—Race start information (breed, age, sex, racing distance, and race type) was obtained for Thoroughbred and Anglo-Arab horses racing in Japan Racing Association-sanctioned races between 1992 and 1997. All horses that raced were examined by a veterinarian within 30 minutes of the conclusion of the race; any horse that had blood at the nostrils was examined with an endoscope. If blood was observed in the trachea, epistaxis related to exercise-induced pulmonary hemorrhage (EIPH) was diagnosed.
Results—Epistaxis related to EIPH was identified following 369 race starts (0.15%). Frequency of EIPHrelated epistaxis was significantly associated with race type, age, distance, and sex. Epistaxis was more common following steeplechase races than following flat races, in older horses than in horses that were 2 years old, following races ≤ 1,600 m long than following races between 1,601 and 2,000 m long, and in females than in sexually intact males. For horses that had an episode of epistaxis, the recurrence rate was 4.64%.
Conclusions and Clinical Relevance—Results suggested that frequency of EIPH-related epistaxis in racehorses is associated with the horse's age and sex, the type of race, and the distance raced. The higher frequency in shorter races suggests that higher intensity exercise of shorter duration may increase the probability of EIPH. (J Am Vet Med Assoc 2001;218:1462–1464)
Abstract
Objective—To determine the effects of body position on lung and air-sac volumes in anesthetized and spontaneously breathing red-tailed hawks (Buteo jamaicensis).
Animals—6 adult red-tailed hawks (sex unknown).
Procedures—A crossover study design was used for quantitative estimation of lung and air-sac volumes in anesthetized hawks in 3 body positions: dorsal, right lateral, and sternal recumbency. Lung volume, lung density, and air-sac volume were calculated from helical computed tomographic (CT) images by use of software designed for volumetric analysis of CT data. Effects of body position were compared by use of repeated-measures ANOVA and a paired Student t test.
Results—Results for all pairs of body positions were significantly different from each other. Mean ± SD lung density was lowest when hawks were in sternal recumbency (–677 ± 28 CT units), followed by right lateral (–647 ± 23 CT units) and dorsal (–630 ± 19 CT units) recumbency. Mean lung volume was largest in sternal recumbency (28.6 ± 1.5 mL), followed by right lateral (27.6 ± 1.7 mL) and dorsal (27.0 ± 1.5 mL) recumbency. Mean partial air-sac volume was largest in sternal recumbency (27.0 ± 19.3 mL), followed by right lateral (21.9 ± 16.1 mL) and dorsal (19.3 ± 16.9 mL) recumbency.
Conclusions and Clinical Relevance—In anesthetized red-tailed hawks, positioning in sternal recumbency resulted in the greatest lung and air-sac volumes and lowest lung density, compared with positioning in right lateral and dorsal recumbency. Additional studies are necessary to determine the physiologic effects of body position on the avian respiratory system.
Abstract
Objective—To evaluate the effects of dorsal versus lateral recumbency on the cardiopulmonary system during isoflurane anesthesia in red-tailed hawks (Buteo jamaicensis).
Animals—6 adult 1.1- to 1.6-kg red-tailed hawks.
Procedures—A randomized, crossover study was used to evaluate changes in respiratory rate, tidal volume, minute ventilation, heart rate, mean arterial and indirect blood pressures, and end-tidal Pco 2 measured every 5 minutes plus Paco 2 and Pao 2 and arterial pH measured every 15 minutes throughout a 75-minute study period.
Results—Respiratory rate was higher, tidal volume lower, and minute ventilation not different in lateral versus dorsal recumbency. Position did not affect heart rate, mean arterial blood pressure, or indirect blood pressure, although heart rate decreased during the anesthetic period. Birds hypoventilated in both positions and Paco 2 differed with time and position × time interaction. The Petco 2 position × time interaction was significant and Petco 2 was a mean of 7 Torr higher than Paco 2. The Paco 2 in dorsal recumbency was a mean of 32 Torr higher than in lateral recumbency. Birds in both positions developed respiratory acidosis.
Conclusions and Clinical Relevance—Differences in tidal volume with similar minute ventilation suggested red-tailed hawks in dorsal recumbency might have lower dead space ventilation. Despite similar minute ventilation in both positions, birds in dorsal recumbency hypoventilated more yet maintained higher Pao 2, suggesting parabronchial ventilatory or pulmonary blood flow distribution changes with position. The results refute the hypothesis that dorsal recumbency compromises ventilation and O2 transport more than lateral recumbency in red-tailed hawks.
Abstract
Objective—To determine whether evaluation of heart rate (HR) and HR variability (HRV) during prolonged road transportation in horses provides a sensitive index of autonomic stimulation.
Animals—Five 2-year-old Thoroughbreds.
Procedure—ECGs were recorded as horses were transported for 21 hours in a 9-horse van. Heart rate, high-frequency (HF) power, low-frequency (LF) power, and LF-to-HF ratio from Fourier spectral analyses of ECGs were calculated and compared with values recorded during a 24-hour period of stall rest preceding transportation.
Results—HR, HF power, and LF power had diurnal rhythms during stall rest but not during road transportation. Heart rate was higher and HF power and LF power lower during road transportation than stall rest, and HR, HF power, LF power, and LF-to-HF ratio all decreased with time during road transportation. Heart rate during stall rest was weakly and inversely associated with LF power, but during road transportation was strongly associated with LF power, HF power, and LF-to-HF ratio. Neither LF power nor HF power was correlated with LF-to-HF ratio during stall rest, but LF power was strongly and HF power weakly correlated with LF-to-HF ratio during road transportation. High-frequency power and LF power were significantly correlated with each other during stall rest and road transportation. Heart rate was significantly influenced by LF power and LF-to-HF ratio during stall rest (R 2 = 0.40) and by HF power and LF-to-HF ratio during road transportation (R 2 = 0.86).
Conclusions and Clinical Relevance—HR is influenced by different sympathovagal mechanisms during stall rest, compared with during road transportation; HRV may be a sensitive indicator of stress in transported horses.