Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: James Averill x
- Refine by Access: All Content x
Abstract
OBJECTIVE To determine the survivability of Mycobacterium bovis on salt and salt-mineral blocks in typical weather conditions in Michigan over two 12-day periods at the height of summer and winter.
SAMPLE 4 salt (NaCl) and 4 salt-mineral blocks inoculated with pure cultures of a strain of M bovis currently circulating in Michigan livestock and wildlife.
PROCEDURES In the summer and again in the winter, inoculated blocks were placed in secured outdoor facilities where equal numbers of each block type (2/type/season) were exposed to shade or sunlight. Samples were collected from randomly selected areas on the surface of each block beginning within 1 hour after placement (day 0) twice a day for the first 4 days and once a day from days 7 through 11. Bacterial culture of samples was performed to detect viable M bovis.
RESULTS Depending on the exposure conditions, salt blocks yielded viable M bovis for up to 2 days after inoculation and salt-mineral blocks yielded viable M bovis for > 3 days. Survival time was greatest on salt-mineral blocks kept outdoors in the shade during the winter. The odds of recovering viable M bovis from salt-mineral block samples were 4.9 times as great during the winter (vs the summer) and 3.0 times as great with exposure to shade (vs sunlight).
CONCLUSIONS AND CLINICAL RELEVANCE Results from this study indicated that salt and salt-mineral blocks should be considered potential sources of bovine tuberculosis when designing risk mitigation programs for cattle herds in areas with wildlife reservoirs of M bovis.
Abstract
OBJECTIVE To describe use of whole-genome sequencing (WGS) and evaluate the apparent sensitivity and specificity of antemortem tuberculosis tests during investigation of an unusual outbreak of Mycobacterium bovis infection in a Michigan dairy herd.
DESIGN Bovine tuberculosis (bTB) outbreak investigation.
ANIMALS Cattle, cats, dog, and wildlife.
PROCEDURES All cattle in the index dairy herd were screened for bTB with the caudal fold test (CFT), and cattle ≥ 6 months old were also screened with a γ-interferon (γIFN) assay. The index herd was depopulated along with all barn cats and a dog that were fed unpasteurized milk from the herd. Select isolates from M bovis–infected animals from the index herd and other bTB-affected herds underwent WGS. Wildlife around all affected premises was examined for bTB.
RESULTS No evidence of bTB was found in any wildlife examined. Within the index herd, 53 of 451 (11.8%) cattle and 12 of 21 (57%) cats were confirmed to be infected with M bovis. Prevalence of M bovis–infected cattle was greatest among 4- to 7-month-old calves (16/49 [33%]) followed by adult cows (36/203 [18%]). The apparent sensitivity and specificity were 86.8% and 92.7% for the CFT and 80.4% and 96.5% for the γIFN assay when results for those tests were interpreted separately and 96.1% and 91.7% when results were interpreted in parallel. Results of WGS revealed that M bovis–infected barn cats and cattle from the index herd and 6 beef operations were infected with the same strain of M bovis. Of the 6 bTB-affected beef operations identified during the investigation, 3 were linked to the index herd only by WGS results; there was no record of movement of livestock or waste milk from the index herd to those operations.
CONCLUSIONS AND CLINICAL RELEVANCE Whole-genome sequencing enhanced the epidemiological investigation and should be used in all disease investigations. Performing the CFT and γIFN assay in parallel improved the antemortem ability to detect M bovis–infected animals. Contact with M bovis–infected cattle and contaminated milk were major risk factors for transmission of bTB within and between herds of this outbreak.