Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Jaewoo Hwang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE To assess the feasibility of esophageal insufflation CT (EICT) for evaluation of the esophagus in dogs.

ANIMALS 7 clinically normal adult Beagles.

PROCEDURES Each dog was anesthetized twice with 1 week between anesthesia sessions. Dogs were positioned in sternal recumbency during all CT scans. During the first anesthesia session, a CT scan was performed before the esophagus was insufflated (insufflation pressure, 0 mm Hg) and unenhanced and contrast-enhanced EICT scans were performed after CO2 was insufflated into the esophageal lumen to achieve a pressure of 5 mm Hg. For the contrast-enhanced scan, each dog received iohexol (600 mg/kg, IV), and the scan was performed 30 seconds later. During the second anesthesia session, unenhanced and contrast-enhanced EICT scans were performed in the same manner except the insufflation pressure achieved was 10 mm Hg. The esophageal luminal cross-sectional area and wall thickness were measured at each of 5 segments, and mean values were compared among the 3 insufflation pressures and between unenhanced and contrast-enhanced images.

RESULTS Mean esophageal luminal cross-sectional area increased and esophageal wall thickness decreased as insufflation pressure increased. Measurements did not differ significantly between unenhanced and contrast-enhanced images. The stomach became distended with CO2 at an insufflation pressure of 10 mm Hg but not at 5 mm Hg. No adverse effects were observed.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested EICT was feasible for esophageal evaluation in dogs. Further research is necessary to determine the optimal insufflation pressure for the procedure and its diagnostic efficacy in diseased patients.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To assess effects of catheter diameter and injection rate of flush solution (saline [0.9% NaCl] solution) on renal contrast-enhanced ultrasonography (CEUS) with perfluorobutane in dogs.

ANIMALS

5 healthy Beagles.

PROCEDURES

CEUS of the kidneys was performed by IV injection of contrast medium (0.0125 mL/kg) followed by injection of 5 mL of saline solution at rates of 1, 3, and 5 mL/s through a 20-gauge or 24-gauge catheter; thus, CEUS was repeated 3 times for each catheter diameter. Time-intensity curves were created for regions of interest drawn in the renal cortex and medulla. Repeatability was determined by calculating the coefficient of variation (CV). Statistical analysis was used to assess whether perfusion variables or CV of the perfusion variables was associated with catheter diameter or injection rate.

RESULTS

Perfusion variables did not differ significantly between catheter diameters. Time to peak enhancement (TTP) in the renal cortex was affected by injection rate, and there were significantly lower values for TTP at higher injection rates. The CEUS variables with the lowest CVs among injection rates were TTP for the renal cortex; the CV for TTP of the renal cortex was the lowest at an injection rate of 5 mL/s.

CONCLUSIONS AND CLINICAL RELEVANCE

Use of a 24-gauge catheter did not alter CEUS with perfluorobutane; therefore, such catheters could be used for CEUS of the kidneys of small dogs. Moreover, a rate of 5 mL/s is recommended for injection of flush solution to obtain greater accuracy for renal CEUS in Beagles.

Full access
in American Journal of Veterinary Research