Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: J. S. Jordan x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To characterize uropathogenic Escherichia coli (UPEC) in cases of clinical feline urinary tract infection (UTI) and subclinical bacteriuria and investigate the in vitro effects of E coli strain Nissle 1917 on isolate growth.

ANIMALS

40 cats with positive E coli culture results for urine collected during routine evaluation.

PROCEDURES

Characterization of UPEC isolates was performed by PCR-based phylotype analysis and serotyping. Nissle 1917 effects on growth inhibition and competitive overgrowth against UPEC isolates were evaluated in vitro using a plate-based competition assay.

RESULTS

Feline phylogroups were similar to previous human and feline UPEC studies, with most of the isolates belonging to phylogroup A (42.5%), B2 (37.5%), and D (15.0%). Fifty-two percent of isolates were found to be resistant to antimicrobials, with 19% of these being multidrug resistant (MDR). Nissle 1917 adversely affected the growth of 82.5% of all isolates and 100% of MDR isolates in vitro. The median zone of inhibition was 3.33 mm (range, 1.67 to 10.67 mm). Thirteen isolates were affected via competitive overgrowth and 20 via growth inhibition.

CLINICAL RELEVANCE

UPEC isolates from cats were similar in phylogroup analysis to human and dog isolates. The in vitro effects of Nissle 1917 on UPEC warrant additional studies to determine if similar results can be duplicated in vivo.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

The aim of this study was to investigate whether plasma neurofilament light chain (pNfL) concentration was altered in Labrador Retrievers with idiopathic laryngeal paralysis (ILP) compared to a control population. A secondary aim was to investigate relationships between age, height, weight, and body mass index in the populations studied.

ANIMALS

123 dogs: 62 purebred Labrador Retrievers with ILP (ILP Cases) and 61 age-matched healthy medium- to large-breed dogs (Controls).

METHODS

Dogs, recruited from August 1, 2016, to March 1, 2022, were categorized as case or control based on a combination of physical exam, neurologic exam, and history. Blood plasma was collected, and pNfL concentration was measured. pNfL concentrations were compared between ILP Cases and Controls. Covariables including age, height, and weight were collected. Relationships between pNfL and covariables were analyzed within and between groups. In dogs where 2 plasma samples were available from differing time points, pNfL concentrations were measured to evaluate alterations over time.

RESULTS

No significant difference in pNfL concentration was found between ILP Cases and Control (P = .36). pNfL concentrations had moderate negative correlations with weight and height in the Control group; other variables did not correlate with pNfL concentrations in ILP Case or Control groups. pNfL concentrations do not correlate with ILP disease status or duration in Labrador Retrievers.

CLINICAL RELEVANCE

There is no evidence that pNfL levels are altered due to ILP disease duration or progression when compared with healthy controls. When evaluating pNfL concentrations in the dog, weight and height should be considered.

Open access
in American Journal of Veterinary Research