Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Heike Kuehn x
- Refine by Access: All Content x
Abstract
Objective—To evaluate effects of sedation on stability of resistance of the respiratory system (RRS) and measures of resting energy expenditure (REE) by use of open-flow indirect calorimetry (IC) and treatment with aerosolized albuterol on REE in horses with recurrent airway obstruction (RAO).
Animals—9 clinically normal horses and 8 horses with RAO.
Procedure—In phase 1, RRS was measured by using forced oscillometry (FOT) in 5 clinically normal horses before and after sedation with xylazine. In phase 2, REE was measured in 4 clinically normal horses between 20 and 25 minutes and again 35 to 40 minutes after sedation with xylazine. In phase 3, IC was performed between 20 and 25 minutes and FOT was performed between 30 and 35 minutes after xylazine administration in 8 horses with RAO; after administration of 450 µg of albuterol, IC and FOT were repeated.
Results—In phase 1, RRS values were significantly lower 5 and 10 minutes after sedation. In phase 2, diminishing sedation did not significantly affect REE. In phase 3, there was a significant decrease in mean RRS (1.15 ± 0.25 vs 0.84 ± 0.14 cm H20/L/s) and REE (30.68 ± 17.89 vs 27.46 ± 16.54 kcal/kg/d) after albuterol administration.
Conclusions and Clinical Relevance—FOT and IC are useful in obtaining repeatable measurements of RRS and REE, respectively, in sedated horses. Concurrent bronchodilation and decreased REE after albuterol administration suggest that increased work of breathing as a result of airway obstruction may contribute to increased energy demands in horses with RAO. (Am J Vet Res2003;64:235–242)
Abstract
Objective—To determine whether tension of the girth strap of a saddle would sufficiently affect rib motion and reduce lung volume to alter pulmonary resistance in horses.
Animals—10 healthy adult horses.
Procedure—We used classical techniques to measure the effects of tightening a girth strap (15 kg of tension) on pulmonary dynamics during eupnea and hyperpnea in horses. Respiratory impedance was evaluated by use of oscillometry, and resistance and reactance data were partitioned into lung and chest wall components. Rib cage and abdominal contributions to tidal volume and minute ventilation were measured by use of respiratory inductance plethysmography. Effects of strap tension on functional residual capacity (FRC) were measured during eupnea by use of a helium-dilution technique. In a subgroup of 6 horses, we also measured transdiaphragmatic pressures during eupnea and hyperpnea induced by administration of lobeline hydrochloride (0.2 mg/kg, IV).
Results—Pulmonary resistance measured by use of oscillometry but not by use of classical methods was significantly increased by the tension of the girth strap. However, the increase in pulmonary resistance could not be explained by a decrease in FRC. Motion of the rib cage was significantly reduced during eupnea and hyperpnea. However, ventilatory variables (tidal volume, minute ventilation, and peak flows), FRC, and transdiaphragmatic pressures were unaltered by strap tension.
Conclusions and Clinical Relevance—Although tension of the girth strap caused measurable changes in respiratory mechanics (loss of rib motion and increased pulmonary resistance), there was no evidence that ventilation was limited. (Am J Vet Res 2005;66:1167–1174)