Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Heather L. Chandler x
- Refine by Access: All Content x
Abstract
Objective—To evaluate whether the effects of oxidative stress could be attenuated in cultures of canine lens epithelial cells (LECs) by incubation with grape seed proanthocyanidin extract (GSE), resveratrol (RES), or a combination of both (GSE+RES).
Sample Population—Primary cultures of canine LECs.
Procedures—LECs were exposed to 100MM tertiary butyl-hydroperoxide (TBHP) with or without GSE, RES, or GSE+RES. The dichlorofluorescein assay was used to detect production of reactive oxygen species (ROS), and immunoblot analysis was used to evaluate the expression of stress-induced cell-signaling markers (ie, the mitogen-activated protein kinase [MAPK] and phosphoinositide-3 kinase [PI3K] pathways).
Results—GSE and GSE+RES significantly reduced ROS production after a 30-minute exposure to TBHP. Only GSE significantly reduced ROS production after a 120-minute exposure to TBHP. Incubation with GSE reduced TBHP-induced activity of the MAPK and PI3K pathways.
Conclusions and Clinical Relevance—GSE inhibited key components associated with cataractogenesis, ROS production, and stress-induced cell signaling. On the basis of the data reported here, there is strong evidence that GSE could potentially protect LECs from the damaging effects of oxidative stress.
Abstract
OBJECTIVE To determine the safety of topical administration of 1% atropine ophthalmic solution in healthy horses by objectively measuring gastrointestinal transit time.
DESIGN Randomized, masked, controlled crossover study.
ANIMALS 6 adult geldings.
PROCEDURES Horses were randomly assigned (3/group) to first receive topical treatment of the left eye with 1% atropine or artificial tears solution; the right eye was left untreated. After 24 hours of treatment every 6 hours, 200 nontoxic beads were administered to each horse via nasogastric intubation and treatment frequency was decreased to every 12 hours for 4 more days. Pupillary light reflexes (PLRs), mydriasis, heart rate, fecal bead passage, abdominal girth measurements, auscultable gut sounds, fecal weight, and clinical signs of abdominal pain were monitored. Following a 4-week washout period, horses received the opposite treatment in the left eye and measurements were repeated. Serum atropine concentration (reflecting systemic absorption) was measured with an ELISA at various points after initial atropine administration.
RESULTS No horse had subjective or objective evidence of colic or ileus at any monitoring point. Complete mydriasis of the left eye with absence of the PLR was identified in 5 horses within 6 hours and in all 6 horses within 12 hours after initial atropine administration. One horse had mydriasis with an absent PLR in the untreated eye by day 5 of atropine treatment. At no point was atropine detected in serum samples of any horse.
CONCLUSIONS AND CLINICAL RELEVANCE Topical atropine application at clinically appropriate doses induced no evidence of ileus in healthy horses.
Abstract
Objective—To assess the in vitro effects of various nalbuphine concentrations on viability and wound healing ability of corneal cells and potential drug transport through the corneal epithelium.
Sample—Cultured canine and human corneal epithelial cells (CECs) and cultured canine corneal stromal fibroblasts.
Procedures—CECs and stromal fibroblasts were exposed to nalbuphine (concentration of solutions ranged from 0% to 1.2%) for up to 30 minutes, and viability was assessed with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. A standard scratch test technique was used. Wound healing of CECs and stromal fibroblasts was evaluated following treatment with nalbuphine solutions < 0.1%. Liquid chromatography–mass spectrometry–mass spectrometry analysis was used to evaluate drug transport across a monolayer and a multilayer of human CECs.
Results—A progressive decrease in viability was detected in canine CECs for all nalbuphine treatment groups, whereas treatment with only 0.5% or 1.2% nalbuphine significantly reduced corneal stromal fibroblast viability, compared with results for control cells. Within 24 hours, treatment with 0.1% nalbuphine solution significantly altered the healing rate of both canine CECs and stromal fibroblasts. Continuous increases in transport rates of nalbuphine were detected with time for both the monolayer and multilayer of human CECs.
Conclusions and Clinical Relevance—In vitro, nalbuphine potentially could penetrate through corneal tissue, but it may cause damage to the corneal epithelium and stromal fibroblasts. Therefore, nalbuphine potentially may impair corneal wound healing.
Abstract
OBJECTIVE To determine the effects of grape seed extract (GSE), lutein, and fish oil containing omega-3 fatty acids on oxidative stress, migration, proliferation, and viability of lens epithelial cells (LECs).
SAMPLE Lens capsules or cultured LECs obtained from canine cadavers.
PROCEDURES An antioxidant reductive capacity assay was used to determine reducing capability of each substance. The LECs were cultured and incubated with various substances, including N-acetyl cysteine (NAC), when appropriate, and dimethyl sulfoxide (DMSO) as positive and vehicle control substances, respectively. A dichlorofluorescein assay was used to evaluate reactive oxygen species (ROS) production, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to determine cell viability. Ex vivo posterior capsule opacification (PCO) was used to evaluate LEC migration and proliferation.
RESULTS Antioxidant reductive effects of GSE surpassed those of NAC, lutein, and fish oil containing omega-3 fatty acids. The GSE reduced ROS production in LECs, compared with the DMSO vehicle control, whereas lutein was pro-oxidative. All test substances reduced cell viability. Ex vivo PCO was not altered by GSE, was decreased by lutein, and was increased by fish oil containing omega-3 fatty acids, compared with results for the DMSO vehicle control.
CONCLUSIONS AND CLINICAL RELEVANCE Only GSE had significant antioxidant capabilities and reduced ROS production; however, no effect on ex vivo PCO was detected. Fish oil containing omega-3 fatty acids increased ex vivo PCO. No conclusions could be made regarding antioxidant effects of these substances on LECs. These findings suggested that the substances will not decrease PCO.
Abstract
Objective—To determine the role of intraocular bacteria in the pathogenesis of equine recurrent uveitis (ERU) in horses from the southeastern United States by evaluating affected eyes of horses with ERU for bacterial DNA and intraocular production of antibodies against Leptospira spp.
Sample Population—Aqueous humor, vitreous humor, and serum samples of 24 clinically normal horses, 52 horses with ERU, and 17 horses with ocular inflammation not associated with ERU (ie, non-ERU inflammation).
Procedures—Ribosomal RNA quantitative PCR (real-time PCR) assay was used to detect bacterial DNA in aqueous humor and vitreous humor from clinically normal horses (n = 12) and horses with chronic (> 3-month) ERU (28). Aqueous humor and serum were also evaluated for anti-Leptospira antibody titers from clinically normal horses (n = 12), horses with non-ERU inflammation (17), and horses with confirmed chronic ERU (24).
Results—Bacterial DNA was not detected in aqueous humor or vitreous humor of horses with ERU or clinically normal horses. No significant difference was found in titers of anti-Leptospira antibodies in serum or aqueous humor among these 3 groups. Only 2 horses, 1 horse with ERU and 1 horse with non-ERU inflammation, had definitive intraocular production of antibodies against Leptospira organisms.
Conclusions and Clinical Relevance—In horses from the southeastern United States, Leptospira organisms may have helped initiate ERU in some, but the continued presence of the organisms did not play a direct role in the pathogenesis of this recurrent disease.
Abstract
Objective—To evaluate effect of adjunctive treatment with tetracycline analogues on time to complete corneal reepithelialization in dogs with nonhealing (ie, refractory) corneal ulcers.
Design—Randomized controlled clinical trial.
Animals—89 dogs with refractory corneal ulcers.
Procedures—Corneal ulcers were treated via debridement and grid keratotomy. Dogs were assigned to receive 1 of 3 treatment regimens for up to 6 weeks: doxycycline (5 mg/kg [2.27 mg/lb], PO, q 12 h) with topically applied ophthalmic ointment containing neomycin, polymyxin B, and bacitracin (ie, triple antibiotic ointment; q 8 h); cephalexin (22 mg/kg [10 mg/lb], PO, q 12 h) with topically applied oxytetracycline ophthalmic ointment (q 8 h); or a control treatment of cephalexin (22 mg/kg, PO, q 12 h) with topically applied triple antibiotic ointment (q 8 h). Healing was monitored via measurements of the wound with calipers and evaluation of photographs obtained every 2 weeks. Treatment effectiveness was evaluated by wound healing and decreased signs of pain.
Results—The Boxer breed was overrepresented in all groups. At the 2-week time point, wound healing was significantly more common in small-breed dogs, compared with large-breed dogs. Dogs treated with oxytetracycline ophthalmic ointment had a significantly shorter healing time than did dogs receiving the control treatment. Corneal ulcers in dogs that received doxycycline PO healed more rapidly than did ulcers in dogs in the control treatment group; however, this difference was not significant.
Conclusions and Clinical Relevance—Topical tetracycline ophthalmic ointment was a safe, inexpensive, and effective adjunctive treatment for refractory corneal ulcers in dogs.