Search Results
You are looking at 1 - 10 of 33 items for
- Author or Editor: Heather K. Knych x
- Refine by Access: All Content x
Abstract
Objective—To characterize pharmacokinetics and pharmacodynamics of detomidine gel administered sublingually in accordance with label instructions to establish appropriate withdrawal guidelines for horses before competition.
Animals—12 adult racehorses.
Procedures—Horses received a single sublingual administration of 0.04 mg of detomidine/kg. Blood samples were collected before and up to 72 hours after drug administration. Urine samples were collected for 5 days after detomidine administration. Plasma and urine samples were analyzed via liquid chromatography–mass spectrometry, and resulting data were analyzed by use of noncompartmental analysis. Chin-to-ground distance, heart rate and rhythm, glucose concentration, PCV, and plasma protein concentration were also assessed following detomidine administration.
Results—Mean ± SD terminal elimination half-life of detomidine was 1.5 ± 1 hours. Metabolite concentrations were below the limit of detection (0.02, 0.1, and 0.5 ng/mL for detomidine, carboxydetomidine, and hydroxydetomidine, respectively) in plasma by 24 hours. Concentrations of detomidine and its metabolites were below the limit of detection (0.05 ng/mL for detomidine and 0.10 ng/mL for carboxydetomidine and hydroxydetomidine) in urine by 3 days. All horses had various degrees of sedation after detomidine administration. Time of onset was ≤ 40 minutes, and duration of sedation was approximately 2 hours. Significant decreases, relative to values at time 0, were detected for chin-to-ground distance and heart rate. There was an increased incidence and exacerbation of preexisting atrioventricular blocks after detomidine administration.
Conclusions and Clinical Relevance—A 48-hour and 3-day withdrawal period for detection in plasma and urine samples, respectively, should be adopted for sublingual administration of detomidine gel.
Abstract
OBJECTIVE To characterize polymorphisms of the gene for cytochrome P450 isozyme 2D50 (CYP2D50) and the disposition of 2 CYP2D50 probe drugs, dextromethorphan and debrisoquine, in horses.
ANIMALS 23 healthy horses (22 Thoroughbreds and 1 Standardbred).
PROCEDURES Single-nucleotide polymorphisms (SNPs) in CYP2D50 were identified. Disposition of dextromethorphan (2 mg/kg) and debrisoquine (0.2 mg/kg) were determined after oral (dextromethorphan) or nasogastric (debrisoquine) administration to the horses. Metabolic ratios of plasma dextromethorphan and total dextrorphan (dextrorphan plus dextrorphan-O-β-glucuronide) and 4-hydroxydebrisoquine concentrations were calculated on the basis of the area under the plasma concentration-versus-time curve extrapolated to infinity for the parent drug divided by that for the corresponding metabolite. Pharmacokinetic data were used to categorize horses into the phenotypic drug-metabolism categories poor, extensive, and ultrarapid. Disposition patterns were compared among categories, and relationships between SNPs and metabolism categories were explored.
RESULTS Gene sequencing identified 51 SNPs, including 27 nonsynonymous SNPs. Debrisoquine was minimally detected after oral administration. Disposition of dextromethorphan varied markedly among horses. Metabolic ratios for dextromethorphan ranged from 0.03 to 0.46 (mean, 0.12). On the basis of these data, 1 horse was characterized as a poor metabolizer, 18 were characterized as extensive metabolizers, and 3 were characterized as ultrarapid metabolizers.
CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that CYP2D50 is polymorphic and that the disposition of the probe drug varies markedly in horses. The polymorphisms may be related to rates of drug metabolism. Additional research involving more horses of various breeds is needed to fully explore the functional implication of polymorphisms in CYP2D50.
Abstract
OBJECTIVE
To determine the pharmacokinetics of hydromorphone hydrochloride after IV and IM administration in guinea pigs (Cavia porcellus).
ANIMALS
8 healthy adult guinea pigs (4 sexually intact females and 4 sexually intact males).
PROCEDURES
In a crossover study, hydromorphone (0.3 mg/kg) was administered once IM (epaxial musculature) or IV (cephalic catheter) to each guinea pig at a 1-week interval (2 treatments/guinea pig). Blood samples were collected before and at predetermined intervals after drug administration via a vascular access port. Plasma hydromorphone concentrations were determined by liquid chromatography–tandem mass spectrometry. Noncompartmental analysis of data was used to calculate pharmacokinetic parameters.
RESULTS
Mean ± SD clearance and volume of distribution for hydromorphone administered IV were 52.8 ± 13.5 mL/min/kg and 2.39 ± 0.479 L/kg, respectively. Mean residence time determined for the IV and IM administration routes was 0.77 ± 0.14 hours and 0.99 ± 0.34 hours, respectively. The maximum observed plasma concentration following IM administration of hydromorphone was 171.9 ± 29.4 ng/mL. No sedative effects were observed after drug administration by either route.
CONCLUSIONS AND CLINICAL RELEVANCE
Pharmacokinetic data indicated that hydromorphone at a dose of 0.3 mg/kg may be administered IV every 2 to 3 hours or IM every 4 to 5 hours to maintain a target plasma concentration between 2 and 4 ng/mL in guinea pigs. Hydromorphone had high bioavailability after IM administration. Further research is necessary to evaluate the effects of other doses and administration routes and the analgesic effects of hydromorphone in guinea pigs.
Abstract
OBJECTIVE
To characterize the pharmacokinetics of mycophenolate mofetil (MMF) following single-dose IV or PO administration, characterize the pharmacokinetics of MMF following long-term PO administration, and describe the clinicopathologic effects of long-term MMF administration in horses.
ANIMALS
12 healthy adult horses.
PROCEDURES
In phase 1, 6 horses received a single IV (2.5 mg/kg) or PO (5 mg/kg) dose of MMF in a randomized balanced crossover assessment (≥ 2-week interval between administrations). In phase 2, 6 other horses received MMF for 60 days (5 mg/kg, PO, q 24 h for 30 days and then 5 mg/kg, PO, q 48 h for an additional 30 days).
RESULTS
Following IV (single-dose) or PO (single- or multiple-dose) administration, MMF was rapidly converted to mycophenolic acid. For single-dose PO administration, mean ± SD maximum plasma mycophenolic acid concentration was 1,778.3 ± 441.5 ng/mL at 0.71 ± 0.29 hours. For single-dose IV administration, mean systemic clearance and volume of distribution at steady state were 0.689 ± 0.194 L/h/kg and 1.57 ± 0.626 L/kg, respectively. Following single doses, mean terminal half-life was 3.99 ± 0.865 hours for IV administration and 4.02 ± 1.01 hours for PO administration. The accumulation index following long-term PO administration was 1.0 ± 0.002, and the terminal half-life was 4.59 ± 1.25 hours following the final dose on day 60. None of the horses developed abnormal clinical signs or had any consistently abnormal clinicopathologic findings.
CONCLUSIONS AND CLINICAL RELEVANCE
Further investigation of the clinical efficacy of long-term MMF treatment of horses with autoimmune diseases is warranted.
Abstract
OBJECTIVE
To determine the pharmacokinetics, bioavailability, and pharmacological effects of cannabidiol (CBD) in senior horses.
ANIMALS
8 university-owned senior horses.
PROCEDURES
In this randomized, crossover study, horses were assigned to receive either a single oral dose of 2 mg/kg CBD in oil or a single IV dose of 0.1 mg/kg CBD in DMSO between August 10 and September 4, 2020. Blood samples were collected before and then 0.5, 1, 4, 8, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, and 264 hours after CBD administration. Serum biochemical analyses and CBCs were performed. Plasma concentrations of CBD and its metabolites were determined with the use of liquid chromatography-tandem mass spectrometry.
RESULTS
Concentrations of CBD and metabolites (7-COH CBD and 7-COOH CBD) were detected in all plasma samples up to 8 hours after dosing (oral and IV), with 7-COOH CBD being the most predominant metabolite. Pharmacokinetic results for CBD oral dosing at 2 mg/kg were mean ± SD half-life of 7.22 ± 2.86 hours, maximum concentration of 18.54 ± 9.80 ng/mL, and time to maximum concentration of 2.46 ± 1.62 hours. For both oral and IV administrations, 7-COOH CBD did not fall below the limit of quantification for the times reported. Oral bioavailability for CBD was 7.92%. There was no meaningful effect of CBD on results for CBC, serum biochemical analyses, or vital signs for any horse.
CLINICAL RELEVANCE
Pharmacokinetics and bioavailability of CBD in senior horses were determined, and there were no adverse effects of administering either the oral or IV dose of CBD evaluated.
Abstract
OBJECTIVE To determine the pharmacokinetics of detomidine hydrochloride administered IV (as an injectable formulation) or by the oral-transmucosal (OTM) route (as a gel) and assess sedative effects of the OTM treatment in healthy dogs.
ANIMALS 12 healthy adult dogs.
PROCEDURES In phase 1, detomidine was administered by IV (0.5 mg/m2) or OTM (1 mg/m2) routes to 6 dogs. After a 24-hour washout period, each dog received the alternate treatment. Blood samples were collected for quantification via liquid chromatography with mass spectrometry and pharmacokinetic analysis. In phase 2, 6 dogs received dexmedetomidine IV (0.125 mg/m2) or detomidine gel by OTM administration (0.5 mg/m2), and sedation was measured by a blinded observer using 2 standardized sedation scales while dogs underwent jugular catheter placement. After a l-week washout period, each dog received the alternate treatment.
RESULTS Median maximum concentration, time to maximum concentration, and bioavailability for detomidine gel following OTM administration were 7.03 ng/mL, 1.00 hour, and 34.52%, respectively; harmonic mean elimination half-life was 0.63 hours. All dogs were sedated and became laterally recumbent with phase 1 treatments. In phase 2, median global sedation score following OTM administration of detomidine gel was significantly lower (indicating a lesser degree of sedation) than that following IV dexmedetomidine treatment; however, total sedation score during jugular vein catheterization did not differ between treatments. The gel was subjectively easy to administer, and systemic absorption was sufficient for sedation.
CONCLUSIONS AND CLINICAL RELEVANCE Detomidine gel administered by the OTM route provided sedation suitable for a short, minimally invasive procedure in healthy dogs.
Abstract
OBJECTIVE To determine pharmacokinetics and sedative effects of buprenorphine after IV and oral transmucosal (OTM) administration in guinea pigs.
ANIMALS 14 male guinea pigs (6 adults for preliminary experiment; eight 8 to 11-week-old animals for primary study).
PROCEDURES A preliminary experiment was conducted to determine an appropriate buprenorphine dose. In the primary study, buprenorphine (0.2 mg/kg) was administered IV or OTM, and blood samples were obtained. The pH of the oral cavity was measured before OTM administration. Sedation was scored for 6 hours on a scale of 0 to 3 (0 = no sedation and 3 = heavy sedation). After a 7-day washout period, procedures were repeated in a crossover manner. Plasma buprenorphine concentration was quantified, and data were analyzed with a noncompartmental pharmacokinetic approach.
RESULTS Mean peak plasma buprenorphine concentrations were 46.7 and 2.4 ng/mL after IV and OTM administration, respectively. Mean time to maximum plasma buprenorphine concentration was 1.5 and 71.2 minutes, and mean terminal half-life was 184.9 and 173.0 minutes for IV and OTM administration, respectively. There was a range of sedation effects (0 to 2) for both routes of administration, which resolved within the 6-hour time frame.
CONCLUSIONS AND CLINICAL RELEVANCE On the basis of pharmacokinetic parameters for this study, buprenorphine at 0.2 mg/kg may be administered IV every 7 hours or OTM every 4 hours to maintain a target plasma concentration of 1 ng/mL. Further studies are needed to evaluate administration of multiple doses and sedative effects in guinea pigs with signs of pain.
Abstract
OBJECTIVE To determine the maximum concentration (Cmax) of amikacin and time to Cmax (Tmax) in the distal interphalangeal (DIP) joint in horses after IV regional limb perfusion (IVRLP) by use of the cephalic vein.
ANIMALS 9 adult horses.
PROCEDURES Horses were sedated and restrained in a standing position and then subjected to IVRLP (2 g of amikacin sulfate diluted to 60 mL with saline [0.9% NaCl] solution) by use of the cephalic vein. A pneumatic tourniquet was placed 10 cm proximal to the accessory carpal bone. Perfusate was instilled with a peristaltic pump over a 3-minute period. Synovial fluid was collected from the DIP joint 5, 10, 15, 20, 25, and 30 minutes after IVRLP; the tourniquet was removed after the 20-minute sample was collected. Blood samples were collected from the jugular vein 5, 10, 15, 19, 21, 25, and 30 minutes after IVRLP. Amikacin was quantified with a fluorescence polarization immunoassay. Median Cmax of amikacin and Tmax in the DIP joint were determined.
RESULTS 2 horses were excluded because an insufficient volume of synovial fluid was collected. Median Cmax for the DIP joint was 600 μg/mL (range, 37 to 2,420 μg/mL). Median Tmax for the DIP joint was 15 minutes.
CONCLUSIONS AND CLINICAL RELEVANCE Tmax of amikacin was 15 minutes after IVRLP in horses and Cmax did not increase > 15 minutes after IVRLP despite maintenance of the tourniquet. Application of a tourniquet for 15 minutes should be sufficient for completion of IVRLP when attempting to achieve an adequate concentration of amikacin in the synovial fluid of the DIP joint.
Abstract
OBJECTIVE To determine the plasma pharmacokinetics and safety of 1% diclofenac sodium cream applied topically to neonatal foals every 12 hours for 7 days.
ANIMALS Twelve 2- to 14-day old healthy Arabian and Arabian-pony cross neonatal foals.
PROCEDURES A 1.27-cm strip of cream containing 7.3 mg of diclofenac sodium (n = 6 foals) or an equivalent amount of placebo cream (6 foals) was applied topically to a 5-cm square of shaved skin over the anterolateral aspect of the left tarsometatarsal region every 12 hours for 7 days. Physical examination, CBC, serum biochemistry, urinalysis, gastric endoscopy, and ultrasonographic examination of the kidneys and right dorsal colon were performed before and after cream application. Venous blood samples were collected at predefined intervals following application of the diclofenac cream, and plasma diclofenac concentrations were determined by liquid chromatography–mass spectrometry.
RESULTS No foal developed any adverse effects attributed to diclofenac application, and no significant differences in values of evaluated variables were identified between treatment groups. Plasma diclofenac concentrations peaked rapidly following application of the diclofenac cream, reaching a maximum of < 1 ng/mL within 2 hours, and declined rapidly after application ceased.
CONCLUSIONS AND CLINICAL RELEVANCE Topical application of the 1% diclofenac sodium cream to foals as described appeared safe, and low plasma concentrations of diclofenac suggested minimal systemic absorption. Practitioners may consider use of this medication to treat focal areas of pain and inflammation in neonatal foals.
Abstract
Objective—To verify the isoflurane anesthetic minimum alveolar concentration (MAC)-sparing effect of a previously administered target plasma fentanyl concentration of 16 ng/mL and characterize an anticipated further sparing in isoflurane MAC associated with higher target plasma fentanyl concentrations.
Animals—8 horses.
Procedures—Horses were assigned 2 of 3 target plasma fentanyl concentrations (16, 24, and 32 ng/mL), administered in ascending order. Following determination of baseline MAC, horses received a loading dose of fentanyl followed by a constant rate infusion; MAC determination was performed in triplicate at baseline and at each fentanyl concentration. Venous blood samples were collected throughout the study for determination of actual plasma fentanyl concentrations. Recovery from anesthesia was monitored, and behaviors were rated as excellent, good, fair, or poor.
Results—Mean ± SD fentanyl plasma concentrations were 13.9 ± 2.6 ng/mL, 20.1 ± 3.6 ng/mL, and 24.1 ± 2.4 ng/mL for target concentrations of 16, 24, and 32 ng/mL, respectively. The corresponding changes in the MAC of isoflurane were −3.28%, −6.23%, and +1.14%. None of the changes were significant. Recovery behavior was variable and included highly undesirable, potentially injurious excitatory behavior.
Conclusions and Clinical Relevance—Results of the study did not verify an isoflurane-sparing effect of fentanyl at a plasma target concentration of 16 ng/mL. Furthermore, a reduction in MAC was not detected at higher fentanyl concentrations. Overall, results did not support the routine use of fentanyl as an anesthetic adjuvant in adult horses.