Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Heather Gray Edwards x
- Refine by Access: All Content x
Abstract
OBJECTIVE
To compare pharmacokinetics of levetiracetam in serum and CSF of cats after oral administration of extended-release (ER) levetiracetam.
ANIMALS
9 healthy cats.
PROCEDURES
Cats received 1 dose of a commercially available ER levetiracetam product (500 mg, PO). Thirteen blood and 10 CSF samples were collected over a 24-hour period for pharmacokinetic analysis. After 1 week, cats received 1 dose of a compounded ER levetiracetam formulation (500 mg, PO), and samples were obtained at the same times for analysis.
RESULTS
CSF concentrations of levetiracetam closely paralleled serum concentrations. There were significant differences between the commercially available product and the compounded formulation for mean ± SD serum maximum concentration (Cmax; 126 ± 33 μg/mL and 169 ± 51 μg/mL, respectively), Cmax corrected for dose (0.83 ± 0.10 μg/mL/mg and 1.10 ± 0.28 μg/mL/mg, respectively), and time to Cmax (5.1 ± 1.6 hours and 3.1 ± 1.5 hours, respectively). Half-life for the commercially available product and compounded formulation of ER levetiracetam was 4.3 ± 2.0 hours and 5.0 ± 1.6 hours, respectively.
CONCLUSIONS AND CLINICAL RELEVANCE
The commercially available product and compounded formulation of ER levetiracetam both maintained concentrations in healthy cats 12 hours after oral administration that have been found to be therapeutic in humans (ie, 5 μg/mL). Results of this study supported dosing intervals of 12 hours, and potentially 24 hours, for oral administration of ER levetiracetam to cats. Monitoring of serum concentrations of levetiracetam can be used as an accurate representation of levetiracetam concentrations in CSF of cats.
Abstract
Objective—To characterize adiponectin protein complexes in lean and obese horses.
Animals—26 lean horses and 18 obese horses.
Procedures—Body condition score (BCS) and serum insulin activity were measured for each horse. Denaturing and native western blot analyses were used to evaluate adiponectin complexes in serum. A human ELISA kit was validated and used to quantify high–molecular weight (HMW) complexes. Correlations between variables were made, and HMW values were compared between groups.
Results—Adiponectin was present as a multimer consisting of HMW (> 720-kDa), low-molecular weight (180-kDa), and trimeric (90-kDa) complexes in serum. All complexes were qualitatively reduced in obese horses versus lean horses, but the percentage of complexes < 250 kDa was higher in obese versus lean horses. High–molecular weight adiponectin concentration measured via ELISA was negatively correlated with serum insulin activity and BCS and was lower in obese horses (mean ± SD, 3.6 ± 3.9 μg/mL), compared with lean horses (8.0 ± 4.6 μg/mL).
Conclusions and Clinical Relevance—HMW adiponectin is measurable via ELISA, and concentration is negatively correlated with BCS and serum insulin activity in horses. A greater understanding of the role of adiponectin in equine metabolism will provide insight into the pathophysiology of metabolic disease conditions.