Search Results
You are looking at 1 - 6 of 6 items for
- Author or Editor: Harriet Davidson x
- Refine by Access: All Content x
Abstract
Objective—To determine effects of atracurium on intraocular pressure (IOP), eye position, and arterial blood pressure in eucapnic and hypocapnic dogs anesthetized with isoflurane.
Animals—16 dogs.
Procedure—Ventilation during anesthesia was controlled to maintain PaCO2 at 38 to 44 mm Hg in group-I dogs (n = 8) and 26 to 32 mm Hg in group-II dogs (8). Baseline measurements for IOP, systolic, diastolic, and mean arterial blood pressure, central venous pressure (CVP), and heart rate (HR) were recorded. Responses to peroneal nerve stimulation were monitored by use of a force-displacement transducer. Atracurium (0.2 mg/kg) was administered IV and measurements were repeated at 1, 2, 3, and 5 minutes and at 5-minute intervals thereafter for 60 minutes.
Results—Atracurium did not affect IOP, HR, or CVP. Group II had higher CVP than group I, but IOP was not different. There was no immediate effect of atracurium on arterial blood pressure. Arterial blood pressure increased gradually over time in both groups. Thirty seconds after administration of atracurium, the eye rotated from a ventromedial position to a central position and remained centrally positioned until 100% recovery of a train-of-four twitch response. The time to 100% recovery was 53.1 ± 5.3 minutes for group I and 46.3 ± 9.2 minutes for group II.
Conclusions and Clinical Relevance—Atracurium did not affect IOP or arterial blood pressure in isoflurane- anesthetized dogs. Hyperventilation did not affect IOP or the duration of effect of atracurium. (Am J Vet Res 2004;65:179–182)
Abstract
Objective—To determine whether the tears of llamas, sheep, and cattle contain lysozyme and compare lysozyme concentrations in tears among these species.
Animals—40 llamas, 5 sheep, and 36 cattle.
Procedure—Electrophoresis, western blot immunoassay for lysozyme, a spectrophotometric assay to detect tear lysozyme by its ability to lyse a suspension of Micrococcus lysodeiticus, and a microtiter plate colorometric assay were performed.
Results—A 13.6-kd protein band was detected by use of electrophoresis and western blot immunoassay in llama and sheep tears but not cattle tears. Results of spectrophotometric assay suggested that llama and sheep tears had high concentrations of lysozyme, whereas cattle tears had low concentrations. Results of the microtiter plate colorometric assay suggested that llama tears had high concentrations of lysozyme, whereas concentrations in sheep and cattle tears were lower.
Conclusions and Clinical Relevance—Lysozyme concentrations in tears may vary among species and this variability may contribute to differing susceptibilities to ocular diseases such as infectious keratoconjunctivitis. (Am J Vet Res 2000;61:1294–1297)
Abstract
Objective—To measure ocular effects (blood-aqueous barrier breakdown and intraocular pressure [IOP]) following aqueocentesis performed with needles of various sizes in dogs.
Animals—28 healthy adult dogs.
Procedures—24 dogs underwent unilateral aqueocentesis (24 treated eyes and 24 contra-lateral untreated eyes); 25-, 27-, or 30-gauge needles were used in 3 treatment groups (n = 8/group). Four dogs were untreated controls. Aqueocentesis was performed during sedation and topical anesthesia. Anterior chamber fluorophotometry was performed before and after aqueocentesis on day 1. On days 2 through 5, sedation and fluorophotometry were repeated. Intraocular pressure was measured with a rebound tonometer at multiple time points.
Results—Aqueocentesis resulted in blood-aqueous barrier breakdown detected via fluorophotometry in all treated eyes, with barrier reestablishment by day 5. On day 2, the contralateral untreated eyes of all 3 groups also had significantly increased fluorescence. Use of a 25-gauge needle resulted in a significant increase in treated eyes' anterior chamber fluorescence on days 3 and 5 as well as a significant increase in IOP 20 minutes following aqueocentesis, compared with the other treatment groups.
Conclusions and Clinical Relevance—Aqueocentesis performed with a 25-gauge needle resulted in the greatest degree of blood-aqueous barrier breakdown and a brief state of intraocular hypertension. Use of a 27- or 30-gauge needle is recommended for aqueous paracentesis. A consensual ocular reaction appeared to occur in dogs following unilateral traumatic blood-aqueous barrier breakdown and may be of clinical importance.
Abstract
Objective—To evaluate lactoferrin and lysozyme content in various ocular glands of bison and cattle and in tears of bison.
Sample Population—Tissues of ocular glands obtained from 15 bison and 15 cattle and tears collected from 38 bison.
Procedure—Immunohistochemical analysis was used to detect lysozyme and lactoferrin in formalin-fixed, paraffin-embedded sections of the ocular glands. Protein gel electrophoresis was used to analyze ocular glands and pooled bison tears by use of a tris-glycine gel and SDS-PAGE. Western blotting was used to detect lactoferrin and lysozyme.
Results—Immunohistochemical staining for lactoferrin was evident in the lacrimal gland and gland of the third eyelid in cattle and bison and the deep gland of the third eyelid (Harder's gland) in cattle. Equivocal staining for lactoferrin was seen for the Harder's gland in bison. An 80-kd band (lactoferrin) was detected via electrophoresis and western blots in the lacrimal gland and gland of the third eyelid in cattle and bison, Harder's glands of cattle, and bison tears. An inconsistent band was seen in Harder's glands of bison. Lysozyme was not detected in the lacrimal gland of cattle or bison with the use of immunohistochemical analysis or western blots. Western blots of bison tears did not reveal lysozyme.
Conclusion and Clinical Relevance—Distribution of lactoferrin and a lack of lysozyme are similar in the lacrimal gland of cattle and bison. Differences in other tear components may be responsible for variability in the susceptibility to infectious corneal diseases that exists between bison and cattle. (Am J Vet Res 2003;64:104–108)
Abstract
CASE DESCRIPTION A client-owned 2-year-old 1.8-kg (4-lb) male pet Rouen duck (Anas platyrhynchos domesticus) was evaluated because of severe swelling around the left eye following traumatic injury to the upper and lower eyelids and 2 associated surgeries that resulted in the removal of the entire upper and lower eyelid margins.
CLINICAL FINDINGS At initial evaluation, ankyloblepharon of the left eye was observed, with no upper or lower eyelid margins and a large, round, fluctuant subcutaneous mass over the left orbit. Orbital exploration and histologic examination revealed a benign cyst consisting of fibrous tissue, conjunctiva, and skeletal muscle bundles. Bacterial culture of cystic fluid yielded few Staphylococcus delphini.
TREATMENT AND OUTCOME Excision of the cyst and evisceration of the left globe were performed, and once daily treatment with orally administered enrofloxacin suspension (12.6 mg/kg [5.7 mg/lb]) and meloxicam (1 mg/kg [0.45 mg/lb]) was initiated. Over the next 4 days, the cyst redeveloped and progressively enlarged. Accumulated fluid was aspirated from the cyst, and 20 mg of gentamicin was injected intraorbitally with ultrasound guidance. Over the subsequent 27-month period, no recurrence of clinical signs or adverse effects were reported by the owner.
CLINICAL RELEVANCE To the authors' knowledge, this is the first report of cyst formation after adnexal injury and evisceration in birds and its successful treatment with intralesional gentamicin injection. Findings emphasized the importance of preserving lacrimal puncta during adnexal or eye removal surgeries in birds. Intralesional injection of gentamicin with the goal of destroying fluid-producing cells may be a safe and effective way to treat intraorbital cysts in birds and other species, although additional research would be required to confirm this.