Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Guy C. M. Grinwis x
  • Refine by Access: All Content x
Clear All Modify Search



To evaluate agreement in results obtained with an MRI-based grading scheme and a macroscopic observation-based grading scheme when used to assess intervertebral disk (IVD) degeneration in cats.


241 MRI and 143 macroscopic images of singular IVDs in 44 client-owned cats (40 cadaveric and 4 live).


Singular images of IVDs were obtained of live cats admitted for treatment of suspected neurologic disease (MRI images of IVDs) and of cadavers of cats euthanized for reasons unrelated to spinal disease (MRI and macroscopic images of IVDs) at the Small Animal Hospital, Vetsuisse Faculty, Zurich, Switzerland, between January 12, 2015, and October 19, 2015. The IVD images were randomized and evaluated twice by 4 observers for each grading scheme. Inter- and intraobserver reliability for the grading schemes was assessed with Cohen weighted κ analysis. Agreement and correlation between results obtained with the 2 grading schemes were determined with Cohen weighted κ and Spearman correlation coefficient (ρ) analyses, respectively.


Inter- and intraobserver agreement between results was substantial to almost perfect (mean weighted κ, 0.66 to 0.83 and 0.71 to 0.86, respectively) for the MRI-based grading scheme and moderate to substantial (mean weighted κ, 0.42 to 0.80 and 0.65 to 0.79, respectively) for the macroscopic observation-based grading scheme. Between the 2 grading schemes, agreement in results was moderate (mean ± SE weighted κ, 0.56 ± 0.05), and the correlation was strong (ρ = 0.73).


Results indicated that the MRI-based and macroscopic observation-based grading schemes used in the present study could be used reliably for classifying IVD degeneration in cats.

Full access
in American Journal of Veterinary Research


Objective—To describe clinical, ultrasonographic, and computed tomographic (CT) features of confirmed neoplastic and nonneoplastic disease in dogs with unilateral orbital diseases, determine criteria to differentiate between the 2 conditions, and assess the relative value of ultrasonography and CT for the differential diagnosis of these 2 conditions.

Design—Prospective study.

Animals—29 dogs with unilateral neoplastic orbital disease and 16 dogs with unilateral nonneoplastic orbital disease.

Procedures—Clinical history and results of physical and ophthalmologic examinations were recorded. Ultrasonographic and CT images were evaluated, and discriminating factors were identified to differentiate neoplastic from nonneoplastic diseases. Diagnostic value of ultrasonography and CT was assessed.

Results—Dogs with neoplastic disease were significantly older; had clinical signs for a longer time before initial examination; had more progressive onset of clinical signs; and more frequently had protrusion of the nictitating membrane, fever, and anorexia. The most discriminating factor for both imaging modalities was delineation of the margins (odds ratio was 41.7 for ultrasonography and 45 for CT), with neoplastic lesions clearly delineated more often. Ultrasonographically, neoplastic lesions were more frequently hypoechoic and homogeneous, with indentation of the globe and bone involvement evident more frequently than for nonneoplastic lesions. Mineralization was detected only with neoplasia. Fluctuant fluid was seen more frequently in dogs with nonneoplastic disease. Computed tomography more frequently revealed extraorbital involvement. Diagnostic value was similar for both imaging modalities.

Conclusions and Clinical Relevance—Ultrasonography and CT are valuable imaging modalities to assist in differentiating neoplastic from nonneoplastic unilateral orbital disease in dogs.

Full access
in Journal of the American Veterinary Medical Association


Objectives—To determine whether increased glucose metabolism is the potential cause of the decreased plasma glucose curve determined after oral glucose tolerance testing in horses with lower motor neuron degeneration.

Animals—3 horses with signs suggestive of lower motor neuron degeneration, 1 horse with malignant melanoma with multiple metastases, and an obese but otherwise healthy horse.

Procedures—Glucose metabolism was assessed by use of the hyperglycemic clamp and euglycemic hyperinsulinemic clamp techniques.

Results—Mean rate of glucose metabolism of horses with lower motor neuron degeneration was significantly greater (mean, 3.7 times greater than control horses; range, 2.1 to 4.8 times greater) than that reported in 5 healthy control horses (41 ± 13 µmol/kg/min vs 11 ± 4.5 µmol/kg/min, respectively). In addition, one of the affected horses, an 8-year-old warmblood gelding, had a 5.6- times increased sensitivity to exogenously administered insulin, compared with that reported in 5 healthy control horses. Pancreatic insulin secretion was not insufficient in horses with lower motor neuron degeneration. Findings in the 2 diseased control horses were unremarkable.

Conclusions and Clinical Relevance—Increased glucose metabolism in horses with lower motor neuron degeneration may be the cause of the decreased plasma glucose curve detected after oral glucose tolerance testing. This finding could aid in developing supportive treatments with respect to adequate glucose and vitamin E supplementation. (Am J Vet Res 2005;66:271–276)

Full access
in American Journal of Veterinary Research