Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Gregory A. Bannikov x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To characterize and purify covalent complexes of matrix metalloproteinase-9 (MMP-9) and haptoglobin released by bovine granulocytes in vitro.

Sample Population—Blood samples obtained from healthy cows and cows with acute and chronic inflammation to obtain WBCs and sera.

Procedures—WBCs were isolated by differential centrifugation, hypotonic lysis of RBCs, and degranulated by stimulation with phorbol ester (20 ng/mL). Cell-conditioned medium was subjected to affinity and gel chromatography and purified proteins subjected to SDS- PAGE gelatin zymography, western blot analysis, Coomassie blue staining, and peptide mass spectrometry for protein identification. Sera of cows hospitalized for acute and chronic septic conditions and of clinically normal cows were analyzed with similar methods.

Results—Matrix metalloproteinase-9 was released from neutrophils in vitro and migrated to a molecular mass of approximately 220 kd (prodimer), approximately 105 kd (promonomer), and > 220 kd (high–molecular mass complexes). These high–molecular mass complexes were composed of α- and β-haptoglobin and MMP-9 (ratio13:13:1). Complexes of MMP-9 and haptoglobin had biochemical properties of both its protein constituents (ie, enzymatic activity toward gelatin and hemoglobin binding). Complexes of MMP-9 and haptoglobin were also detected in sera of cows with acute inflammation, but not in clinically normal cows or cows with chronic disease.

Conclusions and Clinical Relevance—A fraction of neutrophil MMP-9 is released in complex with haptoglobin. The complex is present in granules and retains biological activity of its components. Detection of the complex in serum may provide an indicator of acute inflammation.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To measure the effects of lowmolecular-weight inhibitors on the activity of bovine neutrophil matrix metalloproteinase 9 (MMP-9).

Sample Population—Bovine MMP-9 purified from bovine neutrophilconditioned medium.

Procedures—Neutrophils were degranulated by stimulation with phorbol ester. Enzyme purification was performed by use of gelatin affinity and gel-filtration chromatography. Activated enzyme was incubated with inhibitors prior to addition of substrate (gelatin fluorescein conjugate or fluorogenic peptide). Rates of enzymatic cleavage were determined by monitoring fluorescence as the reactions progressed. Values of IC50 (molar concentration of compound that inhibits specific activity by 50%) and KI (in vitro inhibition constant) were determined.

Results—Rates of enzymatic activity of monomeric and dimeric bovine MMP-9 measured by use of gelatin and peptide substrates were linear with respect to time and concentrations of enzyme and substrate. The MMP-9 was potently inhibited by hydroxamic acids (IC50 for gelatin, 29.2 to 55.7nM; IC50 for peptide, 4.8 to 24.6nM; KI, 0.2 to 0.5nM), whereas tetracyclines (IC50 for gelatin, 30.1 to 112.7MM; IC50 for peptide, 48.0 to 123.8MM; KI, 25.2 to 61.4µM) and chlorhexidine (IC50 for gelatin, 139.1MM; IC50 for peptide, 672.5MM to 1.7mM; KI, 495.0 to 663.0MM) had limited inhibition. Gelatinase-specific inhibitor SB-3CT had intermediate potency (IC50 for peptide, 185.0 to 290.0nM; KI, 66.5 to 86.0nM).

Conclusions and Clinical Relevance—Bovine MMP-9 was potently inhibited by hydroxamic acids and gelatinase inhibitor. These compounds may be useful as modulators of neutrophil-mediated protease activity in cattle.

Full access
in American Journal of Veterinary Research