Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Glenn H. Olsen x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate the antinociceptive and sedative effects and duration of action of hydromorphone hydrochloride after IM administration to American kestrels (Falco sparverius).

Animals—11 healthy 2-year-old American kestrels.

Procedures—Hydromorphone (0.1, 0.3, and 0.6 mg/kg) and an equivalent volume of saline (0.9% NaCl) solution (control treatment) were administered IM to kestrels in a masked randomized complete crossover study design. Foot withdrawal response to a thermal stimulus was determined 30 to 60 minutes before (baseline) and 0.5, 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were determined 3 to 5 minutes before each thermal test.

Results—Hydromorphone at 0.6 mg/kg, IM, significantly increased the thermal foot withdrawal threshold, compared with the response after administration of saline solution, for up to 3 hours, and hydromorphone at 0.1, 0.3, and 0.6 mg/kg, IM, significantly increased withdrawal responses for up to 6 hours, compared with baseline values. No significant differences in mean sedation-agitation scores were detected between hydromorphone and saline solution treatments; however, appreciable sedation was detected in 4 birds when administered 0.6 mg of hydromorphone/kg.

Conclusions and Clinical Relevance—Hydromorphone at the doses evaluated significantly increased the thermal nociception threshold for American kestrels for 3 to 6 hours. Additional studies with other types of stimulation, formulations, dosages, routes of administration, and testing times are needed to fully evaluate the analgesic and adverse effects of hydromorphone in kestrels and other avian species and the use of hydromorphone in clinical settings.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate antinociceptive effects and pharmacokinetics of butorphanol tartrate after IM administration to American kestrels (Falco sparverius).

Animals—Fifteen 2- to 3-year-old American kestrels (6 males and 9 females).

Procedures—Butorphanol (1, 3, and 6 mg/kg) and saline (0.9% NaCl) solution were administered IM to birds in a crossover experimental design. Agitation-sedation scores and foot withdrawal response to a thermal stimulus were determined 30 to 60 minutes before (baseline) and 0.5, 1.5, 3, and 6 hours after treatment. For the pharmacokinetic analysis, butorphanol (6 mg/kg, IM) was administered in the pectoral muscles of each of 12 birds.

Results—In male kestrels, butorphanol did not significantly increase thermal thresholds for foot withdrawal, compared with results for saline solution administration. However, at 1.5 hours after administration of 6 mg of butorphanol/kg, the thermal threshold was significantly decreased, compared with the baseline value. Foot withdrawal threshold for female kestrels after butorphanol administration did not differ significantly from that after saline solution administration. However, compared with the baseline value, withdrawal threshold was significantly increased for 1 mg/kg at 0.5 and 6 hours, 3 mg/kg at 6 hours, and 6 mg/kg at 3 hours. There were no significant differences in mean sedation-agitation scores, except for males at 1.5 hours after administration of 6 mg/kg.

Conclusion and Clinical Relevance—Butorphanol did not cause thermal antinociception suggestive of analgesia in American kestrels. Sex-dependent responses were identified. Further studies are needed to evaluate the analgesic effects of butorphanol in raptors.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the thermal antinociceptive and sedative effects and duration of action of tramadol hydrochloride after oral administration to American kestrels (Falco sparverius).

Animals—12 healthy 3-year-old American kestrels.

Procedures—Tramadol (5, 15, and 30 mg/kg) and a control suspension were administered orally in a masked randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 0.5, 1.5, 3, 6, and 9 hours after treatment. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus test.

Results—The lowest dose of tramadol evaluated (5 mg/kg) significantly increased the thermal foot withdrawal thresholds for up to 1.5 hours after administration, compared with control treatment values, and for up to 9 hours after administration, compared with baseline values. Tramadol at doses of 15 and 30 mg/kg significantly increased thermal thresholds at 0.5 hours after administration, compared with control treatment values, and up to 3 hours after administration, compared with baseline values. No significant differences in agitation-sedation scores were detected between tramadol and control treatments.

Conclusions and Clinical Relevance—Results indicated oral administration of 5 mg of tramadol/kg significantly increased thermal nociception thresholds for kestrels for 1.5 hours, compared with a control treatment, and 9 hours, compared with baseline values; higher doses resulted in less pronounced antinociceptive effects. Additional studies with other types of stimulation, formulations, dosages, routes of administration, and testing times would be needed to fully evaluate the analgesic and adverse effects of tramadol in kestrels and other avian species.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of hydromorphone hydrochloride after IV and IM administration in American kestrels (Falco sparverius).

Animals—12 healthy adult American kestrels.

Procedures—A single dose of hydromorphone (0.6 mg/kg) was administered IM (pectoral muscles) and IV (right jugular vein); the time between IM and IV administration experiments was 1 month. Blood samples were collected at 5 minutes, 1 hour, and 3 hours (n = 4 birds); 0.25, 1.5, and 9 hours (4); and 0.5, 2, and 6 hours (4) after drug administration. Plasma hydromorphone concentrations were determined by means of liquid chromatography with mass spectrometry, and pharmacokinetic parameters were calculated with a noncompartmental model. Mean plasma hydromorphone concentration for each time was determined with naïve averaged pharmacokinetic analysis.

Results—Plasma hydromorphone concentrations were detectable in 2 and 3 birds at 6 hours after IM and IV administration, respectively, but not at 9 hours after administration. The fraction of the hydromorphone dose absorbed after IM administration was 0.75. The maximum observed plasma concentration was 112.1 ng/mL (5 minutes after administration). The terminal half-life was 1.25 and 1.26 hours after IV and IM administration, respectively.

Conclusion and Clinical Relevance—Results indicated hydromorphone hydrochloride had high bioavailability and rapid elimination after IM administration, with a short terminal half-life, rapid plasma clearance, and large volume of distribution in American kestrels. Further studies regarding the effects of other doses, other administration routes, constantrate infusions, and slow release formulations on the pharmacokinetics of hydromorphone hydrochloride and its metabolites in American kestrels may be indicated.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the thermal antinociceptive effects and duration of action of buprenorphine hydrochloride after IM administration to American kestrels (Falco sparverius).

Animals—12 healthy 3-year-old American kestrels.

Procedures—Buprenorphine hydrochloride (0.1, 0.3, and 0.6 mg/kg) and a control treatment (saline [0.9% NaCl] solution) were administered IM in a randomized crossover experimental design. Foot withdrawal response to a thermal stimulus was determined 1 hour before (baseline) and 1.5, 3, and 6 hours after treatment administration. Agitation-sedation scores were determined 3 to 5 minutes before each thermal stimulus. Adverse effects were monitored for 6 hours after treatment administration.

Results—Buprenorphine hydrochloride at 0.1, 0.3, and 0.6 mg/kg, IM, increased thermal threshold for 6 hours, compared with the response for the control treatment. There were no significant differences among buprenorphine treatments. A mild sedative effect was detected at a dose of 0.6 mg of buprenorphine/kg.

Conclusion and Clinical Relevance—At the doses tested, buprenorphine hydrochloride resulted in thermal antinociception in American kestrels for at least 6 hours, which suggested that buprenorphine has analgesic effects in this species. Further studies with longer evaluation periods and additional forms of noxious stimuli, formulations, dosages, and routes of administration are needed to fully evaluate the analgesic effects of buprenorphine in American kestrels.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics of buprenorphine hydrochloride after IM and IV administration to American kestrels (Falco sparverius).

Animals—13 healthy 3-year-old captive-bred American kestrels.

Procedures—Buprenorphine hydrochloride (0.6 mg/kg) was administered IM to all birds. Blood samples were collected at 9 times, ranging from 5 minutes to 9 hours after drug administration. Plasma buprenorphine concentrations were measured by use of tandem liquid chromatography–mass spectrometry. Pharmacokinetic parameters were determined by use of least squares linear regression and noncompartmental analysis of naïve pooled data. After a washout period of 2 weeks, the same dose of buprenorphine was administered IV to all birds and blood samples were collected at the same times after drug administration.

Results—Maximum plasma buprenorphine concentration was achieved within 5 minutes after IM administration. For IM administration, bioavailability was 94.8% and elimination half-life was 92.1 minutes. For IV administration, steady-state volume of distribution was 4,023.8 mL/kg, plasma clearance was 49.2 mL/min/kg, and elimination half-life was 105.5 minutes.

Conclusions and Clinical Relevance—Buprenorphine was rapidly absorbed, and bioavailability was good after IM administration to American kestrels. Plasma buprenorphine concentrations were > 1 ng/mL for 9 hours after both IM and IV administration. These results, in combination with those of a pharmacodynamic study, suggested that the analgesic effects of buprenorphine could last at least 6 to 9 hours in this species. Further investigations of the duration of analgesic effects, multiple-dose protocols, and potential adverse effects of buprenorphine are warranted in American kestrels and other raptors.

Full access
in American Journal of Veterinary Research