Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Glen W. Almond x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To model the plasma tetracycline concentrations in swine (Sus scrofa domestica) treated with medication administered in water and determine the factors that contribute to the most accurate predictions of measured plasma drug concentrations.

Sample—Plasma tetracycline concentrations measured in blood samples from 3 populations of swine.

Procedures—Data from previous studies provided plasma tetracycline concentrations that were measured in blood samples collected from 1 swine population at 0, 4, 8, 12, 24, 32, 48, 56, 72, 80, 96, and 104 hours and from 2 swine populations at 0, 12, 24, 48, and 72 hours hours during administration of tetracycline hydrochloride dissolved in water. A 1-compartment pharmacostatistical model was used to analyze 5 potential covariate schemes and determine factors most important in predicting the plasma concentrations of tetracycline in swine.

Results—2 models most accurately predicted the tetracycline plasma concentrations in the 3 populations of swine. Factors of importance were body weight or age of pig, ambient temperature, concentration of tetracycline in water, and water use per unit of time.

Conclusions and Clinical Relevance—The factors found to be of importance, combined with knowledge of the individual pharmacokinetic and chemical properties of medications currently approved for administration in water, may be useful in more prudent administration of approved medications administered to swine. Factors found to be important in pharmacostatistical models may allow prediction of plasma concentrations of tetracycline or other commonly used medications administered in water. The ability to predict in vivo concentrations of medication in a population of food animals can be combined with bacterial minimum inhibitory concentrations to decrease the risk of developing antimicrobial resistance.

Full access
in American Journal of Veterinary Research


Objective—To identify important pathogens and characterize their serologic and pathologic effects in porcine circovirus type 2 (PCV2)-infected pigs in relation to pig age and type of swine production system.

Design—Cross-sectional study.

Animals—583 conventionally reared pigs.

Procedures—3- (n = 157), 9- (149), 16- (152), and 24-week-old (125) pigs from 41 different 1-, 2-, and 3-site production systems (5 pigs/age group/farm) were euthanized and necropsied. Pigs with and without PCV2 infection were identified (via PCR assay); infection with and serologic responses to other pathogens and pathologic changes in various tissues (including lungs) were assessed. Logistic regression models were constructed for effects overall and within each age group and type of production system.

Results—Compared with PCV2-negative pigs, PCV2-positive pigs were more likely to have swine influenza virus (SIV) type A and Mycoplasma hyopneumoniae infections and sample-to-positive (S:P) ratios for SIV H1N1 from 0.50 to 0.99; also, PCV2-positive pigs had higher serum anti-porcine reproductive and respiratory syndrome virus (PRRSV) antibody titers and more severe lung tissue damage. Infection with SIV (but lower SIV H1N1 S:P ratio) was more likely in 3-week-old PCV2-positive pigs and evidence of systemic disease was greater in 16-week-old PCV2-positive pigs than in their PCV2-negative counterparts. By site type, associations of coinfections and disease effects between PCV2-positive and -negative pigs were greatest in 3-site production systems.

Conclusions and Clinical Relevance—In PCV2-positive pigs, coinfections with SIV, M hyopneumoniae, and PRRSV are important, having the greatest effect in the early to late nursery phase and in 3-site production systems.

Full access
in Journal of the American Veterinary Medical Association


Objective—To evaluate variation of drinking-water flow rates in swine finishing barns and the relationship between drinker flow rate and plasma tetracycline concentrations in pigs housed in different pens.

Design—Cross-sectional (phase 1) and cohort (phase 2) studies.

Sample Population—13 swine finishing farms (100 barns with 7,122 drinkers) in phase 1 and 100 finishing-stage pigs on 2 finishing farms (1 barn/farm) in phase 2.

Procedures—In phase 1, farms were evaluated for water-flow variation, taking into account the following variables: position of drinkers within the barn, type of drinker (swing or mounted), pig medication status, existence of designated sick pen, and existence of leakage from the waterline. In phase 2, blood samples were collected from 50 pigs/barn (40 healthy and 10 sick pigs) in 2 farms at 0, 4, 8, 24, 48, and 72 hours after initiation of water-administered tetracycline HCl (estimated dosage, 22 mg/kg [10 mg/lb]). Plasma tetracycline concentrations were measured via ultraperformance liquid chromatography.

Results—Mean farm drinker flow rates ranged from 1.44 to 2.77 L/min. Significant differences in flow rates existed according to drinker type and whether tetracycline was included in the water. Mean drinker flow rates and plasma tetracycline concentrations were significantly different between the 2 farms but were not different between healthy and sick pigs. The plasma tetracycline concentrations were typically < 0.3 μg/mL.

Conclusions and Clinical Relevance—Many factors affected drinker flow rates and therefore the amount of medication pigs might have received. Medication of pigs with tetracycline through water as performed in this study had questionable therapeutic value.

Full access
in Journal of the American Veterinary Medical Association