Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: George Kennedy x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the effects of florfenicol injection on the meat characteristics of the cervical muscles in cattle.

Animals—100 steers (mean weight, 380 kg).

Procedure—In 50 calves, florfenicol (25 ml, twice) was injected into the cervical muscles of 1 side of the neck, and saline (0.9% NaCl) solution (25 ml, twice) was injected into the cervical muscles of the other side of the neck. In the remaining 50 calves, florfenicol was injected into the cervical muscles of 1 side of the neck, and nothing was injected into the cervical muscles of the other side of the neck. Animals were slaughtered 132 days later, and samples of the cervical muscles were submitted for histologic evaluation and measurement of shear forces.

Results—2 injection sites used in the present study had extensive lesions, and both of these were sites where florfenicol had been injected. However, histologic scores for the florfenicol injection sites were not significantly different from scores for the contralateral saline solution injection sites and uninjected control sites. In addition, shear force values were not significantly different between sites in which florfenicol had been injected and the contralateral sites.

Conclusion and Clinical Relevance—Results suggest that few reactions should be expected with injection of florfenicol into the cervical muscles in steers and that reactions that do occur will consist mainly of fibrosis and infiltration of adipose tissue. However, shear force values, a measure of tenderness of the meat, should not be affected. (Am J Vet Res 2002;63:64–68)

Full access
in American Journal of Veterinary Research
in Journal of the American Veterinary Medical Association

Summary

Pituitary pars intermedia dysfunction is a slowly progressive disorder that afflicts most breeds of horses. Because it shares features with human Cushing disease, it has been referred to as equine Cushing disease. A variety of tests of pituitary-adrenocortical function were performed on horses with evidence of pituitary pars intermedia dysfunction, and results were compared with those in healthy control horses. Diurnal variations in plasma cortisol concentration were not statistically different between control horses and those with pituitary pars intermedia dysfunction. An ACTH stimulation (1 U of natural ACTH gel/kg of body weight, IM) test or a combined dexamethasone suppression test (10 mg, IM) and ACTH stimulation (100 mg of synthetic ACTH, IV) test also failed to distinguish horses with pituitary pars intermedia dysfunction from control horses. A significant (P < 0.001) dose-related suppression of cortisol concentration in response to increasing doses (5, 10, 20, and 40 μg/kg) of dexamethasone was observed in control horses but not in those with pituitary pars intermedia dysfunction. On the basis of plasma cortisol concentration, the dexamethasone suppression test, using 40 μg/kg, whether initiated at 5 PM with sample collection at 15 (8 AM) and 19 (12 PM) hours after dexamethasone administration, or initiated at 12 AM with sample collection at 8 (8 AM), 12 (12 PM), 16 (4 PM), 20 (8 PM), and 24 (12 AM) hours after dexamethasone administration, reliably distinguished between control horses and those with pituitary pars intermedia dysfunction. Several horses did not have clinical evidence of pituitary pars intermedia dysfunction, but did have abnormal dexamethasone suppression test results. In these horses, adenomatous hypertrophy and hyperplasia of the pars intermedia of the pituitary gland was confirmed at necropsy.

Free access
in Journal of the American Veterinary Medical Association