Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: George Bates x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To establish the lowest effective dose of commercially available nanoparticulate silver (AgNP) for antibacterial activity against Escherichia coli (E coli) and methicillin-resistant Staphylococcus pseudintermedius (MRSP), in vitro, and to establish the effect of incorporating AgNP into carriers for sustained release on this antibacterial activity.

SAMPLES

Silver nanoparticle dispersion (0.02 mg/mL) composed of citrate-stabilized, spherical, 10 nm diameter nanoparticles in aqueous buffer.

PROCEDURES

E coli and MRSP were treated with 0.01 mg/mL AgNP. The highest concentration of bacteria where growth was inhibited by AgNP was selected for treatment with 0.01 mg/mL AgNP incorporated 3 carriers for sustained release: calcium sulfate hemihydrate (CSH) beads, poloxamer 407 gel, and gelatin sponge, respectively. The antibacterial activity of AgNP and AgNP incorporated into carriers for sustained release was compared with a mixed linear effects model.

RESULTS

AgNP inhibited bacterial growth at a concentration of 101 for MRSP and 103 for E coli. For MRSP, the treatment group was associated with bacterial growth (P < .001) while the concentration of bacteria and time were not (P = .292 and P = .289, respectively). For E coli, the treatment group and concentration of bacteria were associated with bacterial growth (P < .001 and = .029, respectively) while time was not (P = .095). Poloxamer 407 gel exerted standalone antibacterial activity against both species of bacteria; sponge and CSH beads did not.

CLINICAL RELEVANCE

AgNP has antibacterial activity against E coli and MRSP, which can be reduced when incorporated into carriers for sustained release. Poloxamer 407 gel alone and combined with AgNP exerts antibacterial activity against E coli and MRSP.

Open access