Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Gene S. Foster x
- Refine by Access: All Content x
Summary
A comparison of immune variables following lung sensitization with live Pasteurella haemolytica serotype 1 (Ph1)-impregnated agar beads was done in 2 separate trials. The Phi immune variables studied were blood bactericidal activity, serum bacteriolysis, total classical complement, and indirect hemagglutination antibody. Each trial had 16 male weanling goats: 6 controls and 10 principals. In trial 1, each goat was surgically catheterized through the trachea, then the material was deposited in a bronchus. The controls received only agar beads and the principals received agar beads impregnated with live Phi. These goats were studied for 32 days, euthanatized, and necropsied. In trial 2, the controls were each transthoracically injected with agar beads into the left lung and the principals were similarly injected with agar beads impregnated with live Phi. These goats were studied for 35 days, then challenge exposed transthoracically by injection of Phi in saline solution (1.2 × 107 cfu/ml) into the right lung. Four days later, they were euthanatized and necropsied. The volume of lung consolidated tissue was an excellent measure of Phi immunity. Principal goats generated solid protective immunity to subsequent challenge exposure because minimal or no lung consolidation was observed, whereas large volumes of lung consolidation were seen in the controls.
The principal goats in trial 1 gave a weak serum indirect hemagglutination Phi antibody response, which was attributed to the bronchial method of depositing the Phi. The corresponding response of the control group remained negative. The Phi agar beads (1 × 106 cfu in 0.5 ml) protected the bacteria from immediate phagocytosis and lysis as indicated by the induced pneumonic deaths of 2 principals 5 days later. Also, live Phi were isolated on day 32 during necropsy of respiratory tracts of 3 principals. At necropsy, no Phi isolates were found in the controls. Bacteriolytic activity was not induced against Phi in either control or principal groups in this trial.
In trial 2, the indirect hemagglutination Phi antibody response of the controls remained unchanged throughout the study, but antibody titers of the principals increased to a geometric mean of 1:250 seven days after lung injection (1 × 105 cfu in 0.5 ml). Serum bacteriolytic titers on day 0 indicated that both principals and controls could be subgrouped to high or low subgroups on the basis of their bacteriolytic activity. The bacteriolytic activities of the controls remained unchanged during the experiment, and neither control subgroup was protected from Phi challenge exposure. Bacteriolytic activities of the high and low principal subgroups responded differently to Phi agar bead lung injection, but both principal subgroups were protected from lung challenge exposure. The low principal subgroup generated high titers of indirect hemagglutination Phi antibody, whereas, the high principal subgroup generated lower antibody titers. Total complement, serum bacteriolytic, and blood bactericidal profiles were similar in the principal group with high bacteriolytic activity. The immune factors that protected 2 principal subgroups did not appear to be associated with Phi serum bacteriolysis.
SUMMARY
Classical hemolytic complement (C) of calves was analyzed during a protocol designed to imitate the usual market handling of feeder calves from the southeastern United States. Serum C concentrations of the calves (n = 100 × 4 years) were evaluated on their farm of origin, on arrival at an auction market, on arrival at a feedyard, and during their first 4 weeks in the feedyard. Complement concentrations (measured in ch 50 units) were typically lowest at the farm of origin and highest when the calves entered the auction market 28 to 133 days later. Serum C concentrations decreased after the calves encountered the severe stresses of being in the auction market for 7 days, 24-hour truck transport (1,932 km) to the feedyard, and the first 7 days in the feedyard. The C concentrations recovered after 21 to 28 days in the feedyard. Steers had significantly (P ≤ 0.05) lower C concentrations than did heifers in 3 of 4 years at the farm of origin, and in 2 of 4 years at the auction market. Morbid calves had significantly (P ≤ 0.05) lower C values than did healthy calves on day 7 in the feedyard in 3 of 4 years. There were significant differences in C concentrations of calves from different farms of origin in each of the 4 years. There was no significant difference in C concentrations of calves that were vaccinated vs those not vaccinated with Pasteurella haemolytica.
SUMMARY
A method of inducing Pasteurella haemolytica serotype 1 (Ph1) lung infection in goats, using low numbers of bacteria and without impairing host immunity, was developed. Two trials were conducted. Results of trial 1, using 10 principals (Ph1 agar beads) and 6 controls (agar beads alone), indicated that Ph1 organisms imbedded in agar beads could survive host lung defenses for 32 days. Results of trial 2 indicated that lung immunity in the inoculated goats (principals) was high and they were more protected than controls against a transthoracic challenge of Ph1 (1.18 × 107 colony-forming units) injected into a lung of each goat on posttreatment day 35. When comparing challenge-exposed principals with controls, the controls developed rectal temperatures above normal for a longer time, duration of anorexia was longer, and signs of depression were seen. The controls developed large areas of consolidated lung tissue, more Ph1 isolates were recovered from nasal turbinates and lung tissue, and higher Ph1 concentrations were found in the lungs. The serum Ph1 indirect hemagglutination antibody titers in the principals of both trials increased, compared with titers in controls. Principal goats in ferial 2 had higher Ph1 indirect hemagglutination antibody titers after injection of Phi-impregnated agar beads and less severe lung lesions after challenge exposure than did controls. The small pneumonic consolidated lesions in the principals, compared with extensive lesions in controls after Ph1 challenge exposure, indicated a high degree of immunity after exposure to Ph1 organisms imbedded in agar beads.
Summary
The effectiveness of Pasteurella haemolytica biovar A, serovar 1 (Ph1) subunit vaccines was tested in goats, using challenge exposure by transthoracic injection. Twenty-two weanling male Spanish goats were randomly allotted to 4 groups. Six goats were given 2 transthoracic injections into the lung 18 days apart with live Ph1 impregnated in agar beads (positive controls). Six goats were not given injections (negative controls). Five goats were given 2 transthoracic injections into the lung 18 days apart with 4.6 mg of cytotoxin in agar beads. The remaining 5 goats were given 2 im injections, 18 days apart, into the thigh with 4.6 mg of cytotoxin emulsified in incomplete Freunds’ adjuvant. Twenty-four days after the second injection, all goats were challenge-exposed to live Ph1 by transthoracic injection into the lung, and 4 days later, all goats were euthanatized and necropsied. Serum neutralizing anticytotoxin titer was measured throughout the experiment. Mean volume of consolidated lung tissue was 0.38 cm3 for the positive control group, 32 cm3 for the negative control group; 19 cm3 for the cytotoxin-lung group; and 88 cm3 for the cytotoxin-adjuvant-im group. Only the positive control group was protected from Ph1 challenge exposure. The Ph1 cytotoxin subunit vaccine alone appeared to be ineffective, and the anticytotoxin titer was not correlated with protection.
In a separate trial, 32 weanling male Spanish goats were randomly allotted to 5 groups. Each was given 2 transthoracic injections into the lung 22 days apart. Six goats were given Ph1 cytotoxin impregnated into agar beads; 6 were given Ph1 lipopolysaccharide impregnated in agar beads; 6 were given Ph1 capsule impregnated in agar beads. Six goats were given agar beads only (negative controls), and 6 were given live Ph1 impregnated into agar beads (positive controls). Twenty days after the second injection, all goats were challenge-exposed to live Ph1 by transthoracic injection into the lung, and 4 days later, all goats were euthanatized and necropsied. Mean volume of consolidated lung tissue was 0.14 cm3 for the positive control group, 7.59 cm3 for the negative control group, 11.21 cm3 for the cytotoxin group, 10.19 cm3 for the lipopolysaccharide group, and 1.6 cm3 for the capsule group. Again, only injection of live Ph1 (positive controls) induced solid protection; however, the capsule subunit vaccine induced partial protection against challenge exposure in this trial. Lipopolysaccharide and cytotoxin subunit vaccines were ineffective in protecting goats against challenge exposure with live Ph1.
SUMMARY
An epidemiologic study of Pasteurella haemolytica serovar 1 (Ph1) in market-stressed feeder calves from 7 farms in eastern Tennessee was conducted. The nasal mucus of each calf was cultured sequentially at the farm of origin (day 0), at an auction market (day 133), and at a feedyard in Texas (days 141, 148, 155, and 169). Of the 103 calves tested, 77 were culture-positive, including 1 on day 0, 1 on day 133, 20 on day 141, 57 on day 148, 50 on day 155, and 14 on day 169. From the 143 Ph1 isolates, 20 enzyme profiles were determined by use of a commercial enzyme system that detects 19 enzymatic reactions; 4 antimicrobial susceptibility profiles were obtained, using the disk-diffusion method, which evaluated susceptibility to 11 antibacterial drugs. All isolates were positive for acid phosphatase and alkaline phosphatase, but were negative for α-galactosidase, α-mannosidase, β-glucosidase, β-glucuronidase, cystine aminopeptidase, N-acetyl-β-glucosaminidase, and trypsin. Other positive enzyme reactions included: leucine aminopeptidase, 140 Ph1 isolates; phosphohydrolase, 90 isolates; α-fucosidase, 63 isolates; esterase (C4), 59 isolates; valine aminopeptidase, 30 isolates; esterase lipase (C8), 24 isolates; β-galactosidase, 2 isolates; and α-glucosidase, chymotrypsin and lipase (C14), 1 isolate each. Thirty-four Ph1 profiles were identified, using combined enzyme and antimicrobial susceptibility profiles. The data indicate that the strains isolated during the feedyard period may have been determined more by farm of origin (P ≤ 0.001) than by habitation with calves from other farms while in the feedyard. The combined enzyme and antimicrobial susceptibility profile method is a rapid and simple epidemiologic technique for tracking Ph1 strains in market-stressed feeder calves.