Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Gail E. Russell x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To examine total protein concentration and cell counts of sequentially collected samples of CSF to determine whether blood contamination decreases in subsequent samples and whether formulas used to correct nucleated cell count and total protein concentration are accurate.

Design—Case series.

Animals—22 horses.

Procedure—For each horse, 3 or 4 sequential 2-ml samples of CSF were collected from the subarachnoid space in the lumbosacral region into separate syringes, and blood was obtained from the jugular vein. Total protein concentration, nucleated cell count, and RBC counts were determined in all samples.

Results—Among 3 sequential samples, total protein concentration and RBC count were significantly lower in samples 2 and 3, compared with sample 1. Nucleated cell count was significantly lower in sample 3, compared with sample 1. Among 4 sequential samples, total protein concentration and RBC count were significantly lower in samples 2, 3, and 4, compared with sample 1. Nucleated cell count was significantly lower in samples 3 and 4, compared with sample 1. For 3 correction formulas, significant differences in corrected values for nucleated cell count and total protein concentration were detected between sample 1 and sample 3 or 4.

Conclusion and Clinical Relevance—Because iatrogenic blood contamination decreases in sequential CSF samples, a minimum of 3 samples should be collected before submitting the final sample for analysis. Formulas to correct nucleated cell count and total protein concentration are inaccurate and should not be used to correct for blood contamination in CSF samples. (J Am Vet Med Assoc 2000;217:54–57)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To evaluate the safety of sodium bisulfate for use in horse barn environments by determining its irritant effect on skin and hooves.

Animals—6 female mixed-breed ponies.

Procedure—Sodium bisulfate was applied to clipped intact skin of 6 ponies to evaluate its irritant effect after single (48 hours) and repetitive (6 h/d for 10 days) applications; similar areas of skin were used as untreated control sites. In addition, sodium bisulfate was applied to the sole of both front hooves of each pony and covered with wet gauze, and the entire hoof was covered with adhesive tape for 48 hours.

Results—Contact with moistened sodium bisulfate for 48 hours had no effect on pony skin. Contact with sodium bisulfate for 6 hours on 10 consecutive days did not cause gross changes but did cause mild to moderate microscopic changes including epidermal necrosis, hyperkeratosis, capillary congestion, edema, and diffuse mixed inflammatory cell infiltrate. All changes were limited to the epidermis and superficial dermis. Gross changes in hoof sole, signs of lameness, and increase in digital pulse pressure or pulse intensity were not detected.

Conclusions and Clinical Relevance—Duration of contact with sodium bisulfate in this study was in excess of that expected under typical husbandry conditions. Despite this fact, gross changes in skin and hooves were not detected. Microscopic lesions were confined to the epidermis and superficial dermis. Results suggest that contact with sodium bisulfate under these conditions is safe. (Am J Vet Res 2000;61:1418–1421)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare the effect of thyrotropin-releasing hormone (TRH) administration on endogenous ACTH concentrations in healthy horses and those with pituitary pars inter-media hyperplasia and compare the test with the dexamethasone suppression test (DST).

Design—Prospective case series.

Animals—15 horses with clinical signs of pituitary pars intermedia dysfunction (PPID), 4 horses with equivocal signs of PPID, and 29 horses without signs of PPID.

Procedures—ACTH concentrations prior to and after administration of TRH were measured 61 times in 48 horses. Results of the DST (cortisol response) were compared with those of the TRH test in 29 horses. Thirty-three horses (24 with no clinical signs of PPID, 5 with clinical signs of PPID, and 4 with equivocal clinical signs of PPID) were euthanized and necropsied and their pituitary glands evaluated.

Results—ACTH concentrations increased in all horses, but magnitude and duration of increase were significantly higher in horses with PPID. Endogenous ACTH concentrations were influenced by season. The ACTH baseline concentrations and response to TRH were not correlated with results of the DST. Results of DST were abnormal only in clinically abnormal horses or those with pars intermedia hyperplasia, but were within reference range in 17 of 26 tests in these horses.

Conclusions and Clinical Relevance—The ACTH response to TRH is a useful test for diagnosis of pituitary gland hyperplasia, particularly in horses in which baseline ACTH concentrations are within reference range. The DST was specific but not sensitive and was inconsistent for individuals, and results often did not agree with the TRH test response.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine application rate and effectiveness of sodium bisulfate to decrease the fly population in a horse barn environment.

Sample Population—12 privately owned farms in southeastern Pennsylvania.

Procedure—Application rates of sodium bisulfate were approximately 2.3 kg/stall, 1.1 kg/stall, and 0.5 kg/stall. Two or 3 stalls were treated, and 1 or 2 stalls were not treated (control stalls) at each farm. Farm personnel applied sodium bisulfate in treated stalls daily for 7 days. Fly tapes were hung from the same site in treated and control stalls. After 24 hours, the fly tape was removed, flies adhering to the sticky surface were counted and recorded, and a new fly tape was hung. This procedure was repeated daily during each of the testing periods.

Results—Following the application of 2.3 kg of sodium bisulfate/stall, the numbers of flies collected on the fly tape were significantly decreased in treated stalls, compared with control stalls during the same time periods on 9 of the 12 farms evaluated. Following the application of 1.1 kg of sodium bisulfate/ stall, fly numbers were significantly decreased in treated stalls on 6 of the 9 farms evaluated. Following the application of 0.5 kg of sodium bisulfate/stall, fly numbers were significantly decreased in the treated stalls on 3 of the 4 farms evaluated.

Conclusions and Clinical Relevance—Our findings suggest that sodium bisulfate would be effective for fly control in horse barns. (Am J Vet Res 2000; 61:910–913)

Full access
in American Journal of Veterinary Research