Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: G. Robert Colborne x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate symmetry of the hind limbs in orthopedically normal trotting dogs.

Animals—19 orthopedically normal Labrador Retrievers with no history of lameness.

Procedures—Retroreflective markers were applied to the hind limb joints, and a 4-camera kinematic system captured positional data at 200 Hz in tandem with force platform data collection while the dogs trotted. Morphometric data were combined with kinematic and force data in an inverse dynamics method to calculate net joint moments and powers at the joints as well as total support moment for each limb. Dogs were identified as right or left dominant when their total support moment was > 10% asymmetric between sides.

Results—10 of the 19 dogs were mechanically dominant in the right hind limb as determined by their total support moments. One dog was left dominant, and the remaining 8 were symmetric. Right-dominant dogs had larger net joint moments at the right hip, tarsal, and metatarsophalangeal joints and a smaller moment at the right stifle joint, compared with values for the left hind limb. The 1 left-dominant dog had the exact opposite findings. Hip and stifle joint moments and powers varied between limbs of the right-dominant and left-dominant groups in the timing of their transition from negative to positive, and power amplitudes varied at the hip, tarsal, and metatarsophalangeal joints but not the stifle joint.

Conclusions and Clinical Relevance—Sound trotting dogs can have asymmetries in limb and joint mechanics. These natural mechanical asymmetries should be taken into account when considering models to evaluate stresses at joints and when considering surgery for cruciate ligament rupture.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To quantify the effects of trotting velocity on joint angular excursions, net joint moments, and powers across the hind limb joints in Greyhounds.

Animals—5 healthy Greyhounds with no history of lameness of the hind limbs.

Procedures—Small reflective markers were applied to the skin over the joints of the hind limbs, and a 4-camera kinematic system was used to record positional data at 200 Hz in tandem with force platform data while the dogs trotted on a runway at slow, medium, and fast velocities. Breed-specific morphometric data were combined with kinematic and force data in an inverse-dynamics solution for net joint moments and powers at the hip, stifle, tarsal, and metatarsophalangeal joints.

Results—Angle, moment, and power patterns at the various joints were conserved among the 3 velocities. With increasing velocity, moments and powers at the tarsal, stifle, and hip joints during the stance phase were increased in amplitude, whereas amplitudes during the swing phase were not. The main contributors to increased velocity were the hip extensors and stifle flexors during the early part of the stance phase and the tarsal extensors during the late part of the stance phase.

Conclusions and Clinical Relevance—Increases in trotting velocity in Greyhounds do not alter the basic patterns of work and power for various joints of the hind limbs, but local burst amplitudes during the stance phase increase incrementally.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To evaluate the elastic modulus of various ligaments of the forelimbs of cadaveric horses.

SAMPLE

408 ligaments from 37 forelimbs of 10 Thoroughbred cadavers and cadavers of 9 other horse breeds.

PROCEDURES

Collateral ligaments and straight and oblique sesamoid ligaments were harvested from the proximal interphalangeal, metacarpophalangeal, carpal, and elbow joints of both forelimbs of all 19 horses. Ligament dimensions were measured, and the elastic modulus was determined by tensile testing the ligaments with a strain rate of 1 mm•s−1.

RESULTS

Elastic modulus of the ligaments differed significantly among joints. Highest mean ± SE elastic modulus was for the medial collateral ligament of the metacarpophalangeal joints of Thoroughbreds (68.3 ± 11.0 MPa), and the lowest was for the lateral collateral ligament of the elbow joints of other breeds (2.8 ± 0.3 MPa). Thoroughbreds had a significantly higher elastic modulus for the collateral ligaments of the proximal interphalangeal and metacarpophalangeal joints, compared with values for the other breeds. There was large variation in elastic modulus. Elastic modulus was negatively affected by age. In the ligaments in the distal aspect of the forelimbs, elastic modulus was negatively affected by height at the highest point of the shoulders (ie, withers).

CONCLUSIONS AND CLINICAL RELEVANCE

Cross-sectional area and elastic modulus of collateral ligaments in the forelimbs of equine cadavers differed between breeds and among joints, which may have been reflective of their relative physiologic function under loading during exercise.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To quantify angular excursions; net joint moments; and powers across the stifle, tarsal, and metatarsophalangeal (MTP) joints in Labrador Retrievers and Greyhounds and investigate differences in joint mechanics between these 2 breeds of dogs.

Animals—12 clinically normal dogs (6 Greyhounds and 6 Labrador Retrievers) with no history of hind limb lameness.

Procedure—Small retroreflective markers were applied to the skin over the pelvic limb joints, and a 4- camera kinematic system captured data at 200 Hz in tandem with force platform data while the dogs trotted on a runway. Breed-specific morphometric data were combined with kinematic and force data in an inverse-dynamics solution for stance-phase net joint moments and powers at the stifle, tarsal, and MTP joints.

Results—There were gross differences in kinematic patterns between Greyhounds and Labradors. At the stifle and tarsal joints, moment and power patterns were similar in shape, but amplitudes were larger for the Greyhounds. The MTP joint was a net absorber of energy, and this was greater in the Greyhounds. Greyhounds had a positive phase across the stifle, tarsal, and MTP joints at the end of stance for an active push-off, whereas for the Labrador Retrievers, the only positive phase was across the tarsus, and this was small, compared with values for the Greyhounds.

Conclusions and Clinical Relevance—Gross differences in pelvic limb mechanics are evident between Greyhounds and Labrador Retrievers. Joint kinetics in specific dogs should be compared against breed-specific patterns. (Am J Vet Res 2005;66:1563–1571)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To measure and correlate kinematic and ground reaction force (GRF) data in horses with superficial digital flexor tendinitis.

Animals—6 sound horses.

Procedure—Horses were evaluated before (sound evaluation) and after (lame evaluation) induction of superficial digital flexor tendinitis in 1 forelimb (randomized) by injection of collagenase. As each horse trotted, kinematic data were collected by use of an optoelectronic system, and GRF data were measured by use of a force plate. Three-dimensional kinematic and GRF data were projected onto a 2-dimensional sagittal plane.

Results—Lame limbs had significantly lower peak vertical GRF, less flexion of the distal interphalangeal joint, and less extension of the metacarpophalangeal joint, compared with compensating limbs. Carpal joint kinematics did not change. Compensating limbs had a more protracted orientation throughout the stance phase and higher braking longitudinal force and impulse; however, total range of rotation from ground contact to lift off did not change. Transfer of body weight from lame to compensating limbs was smooth, without elevation of the body mass into a suspension phase. Propulsive components of longitudinal GRF did not differ between limbs.

Conclusions and Clinical Relevance—In horses with experimentally induced superficial digital flexor tendinitis, changes in vertical GRF were reflected in angular excursions of the distal interphalangeal and metacarpophalangeal joints, whereas changes in longitudinal GRF were associated with alterations in the protraction-retraction angle of the entire limb. (Am J Vet Res 2000;61:191–196)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether analysis of net joint moments and joint powers is a suitable technique for evaluation of mechanics and energetics of lameness in horses and to measure effects of superficial digital flexor tendinitis.

Animals—6 sound horses.

Procedure—Horses were evaluated before (sound evaluation) and after (lame evaluation) induction of superficial digital flexor tendinitis in 1 forelimb by injection of collagenase. Recordings were made with an optoelectronic system and a force plate as horses trotted. Net joint moments and joint powers in the sagittal plane at each joint in the forelimbs during the stance phase were determined. Peak values were determined, and mechanical energy absorbed and generated at each joint was calculated. Comparisons were made between contralateral limbs during sound and lame evaluations.

Results—Lame limbs had significant reductions in peak values for net joint moments on the palmar aspect of metacarpophalangeal (fetlock), carpal, and humeroulnar joints. Total energy absorbed was significantly lower at every joint in lame limbs, compared with compensating limbs.

Conclusions and Clinical Relevance—Horses with superficial digital flexor tendinitis had significant differences between lame and compensating limbs for net joint moments and joint powers at all joints, indicating that the gait of horses with superficial digital flexor tendinitis is energetically inefficient. Assessment of net joint moments and joint powers is a useful tool in evaluating equine lameness. (Am J Vet Res 2000;61:197–201)

Full access
in American Journal of Veterinary Research