Search Results

You are looking at 1 - 10 of 16 items for

  • Author or Editor: Francisco J. Teixeira-Neto x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To investigate the effects of buprenorphine on cardiopulmonary variables and on abdominal auscultation scores in horses.

Animals—6 healthy adult horses.

Procedures—Horses were restrained in stocks and allocated to 2 treatments in a randomized crossover design, with 1-week intervals between each treatment. Saline (0.9% NaCl) solution was administered IV as a control, whereas buprenorphine (10 μg/kg, IV) was administered to the experimental group. Cardiopulmonary data were collected for 120 minutes after buprenorphine or saline solution administration. Abdominal auscultation scores were monitored for 2 and 12 hours after drug administration in the control and experimental groups, respectively.

Results—Following control treatment, horses remained calm while restrained in the stocks and no significant changes in cardiopulmonary variables were observed throughout the study. Buprenorphine administration caused excitatory phenomena (restlessness and head shaking). Heart rate, cardiac index, and arterial blood pressure were significantly increased after buprenorphine administration until the end of the observational period (120 minutes). Minimal changes were found in arterial blood gas tensions. Abdominal auscultation scores decreased significantly from baseline for 4 hours after buprenorphine administration.

Conclusions and Clinical Relevance— Buprenorphine induced excitement and hemodynamic stimulation with minimal changes in arterial blood gas tensions. These effects may impact the clinical use of buprenorphine in horses. Further studies are indicated to investigate the effects of buprenorphine on gastrointestinal motility and fecal output.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To compare changes in pulse pressure variation (PPV) and plethysmographic variability index (PVI) induced by hemorrhage followed by volume replacement (VR) in isoflurane-anesthetized dogs.

ANIMALS 7 healthy adult dogs.

PROCEDURE Each dog was anesthetized with isoflurane and mechanically ventilated. End-tidal isoflurane concentration was adjusted to maintain mean arterial pressure (MAP) at 60 to 70 mm Hg before hemorrhage. Controlled hemorrhage was initiated and continued until the MAP decreased to 40 to 50 mm Hg, then autologous blood removed during hemorrhage was retransfused during VR. Various physiologic variables including PPV and PVI were recorded immediately before (baseline) and after controlled hemorrhage and immediately after VR.

RESULTS Mean ± SD PPV and PVI were significantly increased from baseline after hemorrhage (PPV, 20 ± 6%; PVI, 18 ± 4%). After VR, the mean PPV (7 ± 3%) returned to a value similar to baseline, whereas the mean PVI (10 ± 3%) was significantly lower than that at baseline. Cardiac index (CI) and stroke index (SI) were significantly decreased from baseline after hemorrhage (CI, 2.07 ± 0.26 L/min/m2; SI, 20 ± 3 mL/beat/m2) and returned to values similar to baseline after VR (CI, 4.25 ± 0.63 L/min/m2; SI, 36 ± 6 mL/beat/m2). There was a significant positive correlation (r 2 = 0.77) between PPV and PVI after hemorrhage.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that both PPV and PVI may be useful for identification of dogs that respond to VR with increases in SI and CI (ie, dogs in the preload-dependent limb of the Frank-Starling curve).

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare hemodynamic, clinicopathologic, and gastrointestinal motility effects and recovery characteristics of halothane and isoflurane in horses undergoing arthroscopic surgery.

Animals—8 healthy adult horses.

Procedure—Anesthesia was maintained with isoflurane or halothane (crossover study). At 6 intervals during anesthesia and surgery, cardiopulmonary variables and related derived values were recorded. Recovery from anesthesia was assessed; gastrointestinal tract motility was subjectively monitored for 72 hours after anesthesia. Horses were administered chromium, and fecal chromium concentration was used to assess intestinal transit time. Venous blood samples were collected for clinicopathologic analyses before and 2, 24, and 48 hours after anesthesia.

Results—Compared with halothane-anesthetized horses, cardiac index, oxygen delivery, and heart rate were higher and systemic vascular resistance was lower in isoflurane-anesthetized horses. Mean arterial blood pressure and the dobutamine dose required to maintain blood pressure were similar for both treatments. Duration and quality of recovery from anesthesia did not differ between treatments, although the recovery periods were somewhat shorter with isoflurane. After isoflurane anesthesia, gastrointestinal motility normalized earlier and intestinal transit time of chromium was shorter than that detected after halothane anesthesia. Compared with isoflurane, halothane was associated with increases in serum aspartate transaminase and glutamate dehydrogenase activities, but there were no other important differences in clinicopathologic variables between treatments.

Conclusions and Clinical Relevance—Compared with halothane, isoflurane appears to be associated with better hemodynamic stability during anesthesia, less hepatic and muscle damage, and more rapid return of normal intestinal motility after anesthesia in horses undergoing arthroscopic procedures.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of increasing doses of remifentanil hydrochloride administered via constant rate infusion (CRI) on the minimum alveolar concentration (MAC) of isoflurane in cats.

Animals—6 healthy adult cats.

Procedures—For each cat, 2 experiments were performed (2-week interval). On each study day, anesthesia was induced and maintained with isoflurane; a catheter was placed in a cephalic vein for the administration of lactated Ringer's solution or remifentanil CRIs, and a catheter was placed in the jugular vein for collection of blood samples for blood gas analyses. On the first study day, individual basal MAC (MACBasal) was determined for each cat. On the second study day, 3 remifentanil CRIs (0.25, 0.5, and 1.0 μg/kg/min) were administered (in ascending order); for each infusion, at least 30 minutes elapsed before determination of MAC (designated as MACR0.25, MACR0.5, and MACR1.0, respectively). A 15-minute washout period was allowed between CRIs. A control MAC (MACControl) was determined after the last remifentanil infusion.

Results—Mean ± SD MACBasal and MACControl values at sea level did not differ significantly (1.66 ± 0.08% and 1.52 ± 0.21%, respectively). The MAC values determined for each remifentanil CRI did not differ significantly. However, MACR0.25, MACR0.5, and MACR1.0 were significantly decreased, compared with MACBasal, by 23.4 ± 7.9%, 29.8 ± 8.3%, and 26.0 ± 9.4%, respectively.

Conclusions and Clinical Relevance—The 3 doses of remifentanil administered via CRI resulted in a similar degree of isoflurane MAC reduction in adult cats, indicating that a ceiling effect was achieved following administration of the lowest dose.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of a dexmedetomidine constant rate infusion (CRI) and atropine on changes in global perfusion variables induced by hemorrhage and volume replacement (VR) in isoflurane-anesthetized dogs.

Animals—8 adult dogs.

Procedures—Each dog was anesthetized twice, with a 2-week interval between anesthetic sessions. Anesthesia was maintained with 1.3 times the minimum alveolar concentration of isoflurane with and without dexmedetomidine (1.6 μg/kg, IV bolus, followed by 2 μg/kg/h, CRI). Dogs were mechanically ventilated and received an atracurium neuromuscular blockade during both sessions. During anesthesia with isoflurane and dexmedetomidine, atropine was administered 30 minutes before baseline measurements were obtained. After baseline data were recorded, 30% of the total blood volume was progressively withdrawn and VR was achieved with an equal proportion of autologous blood.

Results—Following hemorrhage, cardiac index, oxygen delivery index, and mixed-venous oxygen saturation were significantly decreased and the oxygen extraction ratio was significantly increased from baseline. The anaerobic threshold was not achieved during either anesthetic session. When dogs were anesthetized with isoflurane and dexmedetomidine, they had a significantly lower heart rate, cardiac index, and mixed-venous oxygen saturation during VR than they did when anesthetized with isoflurane alone. Plasma lactate concentration, mixed venous-to-arterial carbon dioxide difference, base excess, and anion gap were unaltered by hemorrhage and VR and did not differ between anesthetic sessions.

Conclusions and Clinical Relevance—Results indicated that the use of a dexmedetomidine CRI combined with atropine in isoflurane-anesthetized dogs that underwent volume-controlled hemorrhage followed by VR did not compromise global perfusion sufficiently to result in anaerobic metabolism.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the cardiorespiratory and intestinal effects of the muscarinic type-2 (M2) antagonist, methoctramine, in anesthetized horses.

Animals—6 horses.

Procedure—Horses were allocated to 2 treatments in a randomized complete block design. Anesthesia was maintained with halothane (1% end-tidal concentration) combined with a constant-rate infusion of xylazine hydrochloride (1 mg/kg/h, IV) and mechanical ventilation. Hemodynamic variables were monitored after induction of anesthesia and for 120 minutes after administration of methoctramine or saline (0.9% NaCl) solution (control treatment). Methoctramine was given at 10-minute intervals (10 µg/kg, IV) until heart rate (HR) increased at least 30% above baseline values or until a maximum cumulative dose of 30 µg/kg had been administered. Recovery characteristics, intestinal auscultation scores, and intestinal transit determined by use of chromium oxide were assessed during the postanesthetic period.

Results—Methoctramine was given at a total cumulative dose of 30 µg/kg to 4 horses, whereas 2 horses received 10 µg/kg. Administration of methoctramine resulted in increases in HR, cardiac output, arterial blood pressure, and tissue oxygen delivery. Intestinal auscultation scores and intestinal transit time (interval to first and last detection of chromium oxide in the feces) did not differ between treatment groups.

Conclusions and Clinical Relevance—Methoctramine improved hemodynamic function in horses anesthetized by use of halothane and xylazine without causing a clinically detectable delay in the return to normal intestinal motility during the postanesthetic period. Because of their selective positive chronotropic effects, M2 antagonists may represent a safe alternative for treatment of horses with intraoperative bradycardia. (Am J Vet Res 2004;65:464–472)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of administration of a peripheral α2-adrenergic receptor antagonist (L-659,066), with and without concurrent administration of glycopyrrolate, on cardiopulmonary effects of medetomidine administration in dogs.

Animals—6 healthy adult dogs.

Procedures—Dogs received saline (0.9% NaCl) solution (saline group), L-659,066 (group L), or L-659,066 with glycopyrrolate (group LG). These pretreatments were followed 10 minutes later by administration of medetomidine in a randomized crossover study. Hemodynamic measurements and arterial and mixed-venous blood samples for blood gas analysis were obtained prior to pretreatment, 5 minutes after pretreatment, and after medetomidine administration at intervals up to 60 minutes.

Results—After pretreatment in the L and LG groups, heart rate, cardiac index, and partial pressure of oxygen in mixed-venous blood (PvO2) values were higher than those in the saline group. After medetomidine administration, heart rate, cardiac index, and PvO2 were higher and systemic vascular resistance, mean arterial blood pressure, and central venous pressure were lower in the L and LG groups than in the saline group. When the L and LG groups were compared, heart rate was greater at 5 minutes after medetomidine administration, mean arterial blood pressure was greater at 5 and 15 minutes after medetomidine administration, and central venous pressure was lower during the 60-minute period after medetomidine administration in the LG group.

Conclusions and Clinical Relevance—Administration of L-659,066 prior to administration of medetomidine reduced medetomidine-induced cardiovascular changes in healthy dogs. No advantage was detected with concurrent administration of L-659,066 and glycopyrrolate.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of epidural administration of 3 doses of dexmedetomidine on isoflurane minimum alveolar concentration (MAC) and characterize changes in bispectral index (BIS) induced by nociceptive stimulation used for MAC determination in dogs.

Animals—6 adult dogs.

Procedures—Isoflurane-anesthetized dogs received physiologic saline (0.9% NaCl) solution (control treatment) or dexmedetomidine (1.5 [DEX1.5], 3.0 [DEX3], or 6.0 [DEX6] μg/kg) epidurally in a crossover study. Isoflurane MAC (determined by use of electrical nociceptive stimulation of the hind limb) was targeted to be accomplished at 2 and 4.5 hours. Changes in BIS attributable to nociceptive stimulation and cardiopulmonary data were recorded at each MAC determination.

Results—With the control treatment, mean ± SD MAC values did not change over time (1.57 ± 0.23% and 1.55 ± 0.25% at 2 and 4.5 hours, respectively). Compared with the control treatment, MAC was significantly lower at 2 hours (13% reduction) but not at 4.5 hours (7% reduction) in DEX1.5-treated dogs and significantly lower at 2 hours (29% reduction) and 4.5 hours (13% reduction) in DEX3-treated dogs. The DEX6 treatment yielded the greatest MAC reduction (31% and 22% at 2 and 4.5 hours, respectively). During all treatments, noxious stimulation increased BIS; but changes in BIS were correlated with increases in electromyographic activity.

Conclusions and Clinical Relevance—In dogs, epidural administration of dexmedetomidine resulted in dose-dependent decreases in isoflurane MAC and that effect decreased over time. Changes in BIS during MAC determinations may not represent increased awareness because of the possible interference of electromyographic activity.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate cardiopulmonary effects of glycopyrrolate in horses anesthetized with halothane and xylazine.

Animals—6 horses.

Procedure—Horses were allocated to 2 treatment groups in a randomized complete block design. Anesthesia was maintained in mechanically ventilated horses by administration of halothane (1% end-tidal concentration) combined with a constant-rate infusion of xylazine hydrochloride (1 mg/kg/h, IV). Hemodynamic variables were monitored after induction of anesthesia and for 120 minutes after administration of glycopyrrolate or saline (0.9% NaCl) solution. Glycopyrrolate (2.5 µg/kg, IV) was administered at 10-minute intervals until heart rate (HR) increased at least 30% above baseline or a maximum cumulative dose of 7.5 µg/kg had been injected. Recovery characteristics and intestinal auscultation scores were evaluated for 24 hours after the end of anesthesia.

Results—Cumulative dose of glycopyrrolate administered to 5 horses was 5 µg/kg, whereas 1 horse received 7.5 µg/kg. The positive chronotropic effects of glycopyrrolate were accompanied by an increase in cardiac output, arterial blood pressure, and tissue oxygen delivery. Whereas HR increased by 53% above baseline values at 20 minutes after the last glycopyrrolate injection, cardiac output and mean arterial pressure increased by 38% and 31%, respectively. Glycopyrrolate administration was associated with impaction of the large colon in 1 horse and low intestinal auscultation scores lasting 24 hours in 3 horses.

Conclusions and Clinical Relevance—The positive chronotropic effects of glycopyrrolate resulted in improvement of hemodynamic function in horses anesthetized with halothane and xylazine. However, prolonged intestinal stasis and colic may limit its use during anesthesia. (Am J Vet Res 2004;65:456–463)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats.

Animals—8 adult cats.

Procedures—On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, IV) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 μg/kg/ min, IV) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (≥ 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II).

Results—In phase I, heart rate and arterial pressure did not differ between remifentanil- treated groups. From 30 to 90 minutes, cats receiving 0.3 μg of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 μg of remifentanil/kg/min. In phase II, the highest dosage (mean ± SEM) of remifentanil that prevented cardiovascular responses was 0.23 ± 0.01 μg/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes.

Conclusions and Clinical Relevance—Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 μg/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.

Full access
in American Journal of Veterinary Research