Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Emily N. Gould x
  • Refine by Access: All Content x
Clear All Modify Search


OBJECTIVE To investigate the effects of specific cysteine protease (CP) inhibitors on cytopathic changes to porcine intestinal epithelial cells induced by Tritrichomonas foetus isolated from naturally infected cats.

SAMPLE T foetus isolates from 4 naturally infected cats and nontransformed porcine intestinal epithelial cells.

PROCEDURES T foetus isolates were treated with or without 0.1 to 1.0mM of the CP inhibitors antipain, cystatin, leupeptin, and chymostatin and the vinyl sulfone inhibitors WRR-483 and K11777. In-gel gelatin zymography was performed to evaluate the effects of these inhibitors on CP activity of T foetus isolates. Each treated or untreated isolate was also cocultured with monolayers of porcine intestinal epithelial cells for 24 hours, and cytopathic effects of T foetus were evaluated by light microscopy and crystal violet spectrophotometry.

RESULTS Results of in-gel gelatin zymography suggested an ability of WRR-483, K11777, and cystatin to target specific zones of CP activity of the T foetus isolates. These inhibitors had no effect on T foetus growth, and the cytopathic changes to the intestinal epithelium induced by all 4 T foetus isolates were significantly inhibited.

CONCLUSIONS AND CLINICAL RELEVANCE This study revealed that certain protease inhibitors were capable of inhibiting regions of CP activity (which has been suggested to cause intestinal cell damage in cats) in T foetus organisms and of ameliorating T foetus–induced cytopathic changes to porcine intestinal epithelium in vitro. Although additional research is needed, these inhibitors might be useful in the treatment of cats with trichomonosis.

Full access
in American Journal of Veterinary Research



To characterize gastrointestinal transit times (GITTs) and pH in dogs, and to compare to data recently described for cats.


7 healthy, colony-housed Beagles.


The GITTs and pH were measured using a continuous pH monitoring system. For the first period (prefeeding), food was withheld for 20 hours followed by pH capsule administration. Five hours after capsule administration, dogs were offered 75% of their historical daily caloric intake for 1 hour. For the second period (postfeeding), food was withheld for 24 hours. Dogs were allowed 1 hour to eat, followed by capsule administration. Both periods were repeated 3 times. The GITTs and pH were compared to published feline data.


The mean ± SD transit times in dogs for the pre- and postfeeding periods, respectively, were esophageal, 3 ± 5 minutes and 13 ± 37 minutes; gastric, 31 ± 60 minutes and 829 ± 249 minutes; and intestinal, 795 ± 444 minutes and 830 ± 368 minutes. The mean ± SD gastrointestinal pH in dogs for the pre- and postfeeding periods, respectively, were esophageal, 6.6 ± 0.6 and 5.7 ± 1.0; gastric, 3.0 ± 1.4 and 1.8 ± 0.3; intestinal, 7.9 ± 0.3 and 7.7 ± 0.6; first-hour small intestinal, 7.6 ± 0.5 and 7.1 ± 0.4; and last-hour large intestinal, 7.9 ± 0.6 and 7.7 ± 1.0. The first-hour small intestinal pH and total transit times varied between dogs and cats depending on feed period (P = .002 and P = .04, respectively). Post hoc analysis revealed significantly shorter total transit times in dogs prefeeding (P = .005; mean ± SD for cats, 2,441 ± 1,359 minutes; for dogs, 828 ± 439 minutes) and postfeeding (P = .03; mean ± SD for cats, 3,009 ± 1,220 minutes; for dogs, 1,671 ± 513 minutes). Total transit time for dogs was also shorter pre- versus postfeeding (P = .003).


GITT is faster in Beagles compared to cats, but gastrointestinal pH are similar when fed the same diet.

Open access
in Journal of the American Veterinary Medical Association