Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Emily Mort x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine accuracy of the use of triaxial accelerometry for measuring daily activity as a predictor of maintenance energy requirement (MER) in healthy adult Labrador Retrievers.

Animals—10 healthy adult Labrador Retrievers.

Procedures—Dogs wore an accelerometer for two 2-week periods, with data on daily activity successfully collected for 24 to 26 days. These data, along with body weight, were used as independent variables in a multiple linear regression model to predict the dependent variable of daily MER. The predictive accuracy of the model was compared with that of a model that excluded activity. Dietary energy intake at a stated amount of body weight stability was used as an equivalent measure of MER in these analyses.

Results—The multiple linear regression model that included body weight and daily activity as independent variables could be used to predict observed MER with a mean absolute error of 63.5 kcal and an SE of estimation of 94.3 kcal. Removing activity from the model reduced the predictive accuracy to a mean absolute error of 129.8 kcal and an SE of estimation of 165.4 kcal.

Conclusions and Clinical Relevance—Use of triaxial accelerometers to provide an independent variable of daily activity yielded a marked improvement in predictive accuracy of the regression model, compared with that for a model that used only body weight. Improved accuracy in estimations of MER could be made for each dog if an accelerometer was used to record its daily activity.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare flow-mediated vasodilation (FMD) measurements in brachial and femoral arteries of healthy dogs habituated to the assessment method, evaluate repeatability of these measurements, and investigate effects of blood pressure cuff inflation time on femoral artery FMD measurements.

Animals—11 healthy adult Miniature Schnauzers.

Procedures—Arterial luminal diameter and blood flow velocity integral (FVI) were measured before and after cuff inflation of 5 minutes' (brachial and femoral arteries) or 3 minutes' duration (femoral artery) in separate experiments. A blood pressure cuff was inflated to > 200 mm Hg distal to each imaging site to increase local blood flow to induce reactive hyperemia. Changes in FVI after cuff deflation, FMD, and between-dog and within-dog coefficients of variation (CVs) were determined.

Results—After cuff inflation of 5 minutes' duration, greater changes were detected in median change in FVI and FMD of brachial arteries (174.0% and 8.0%, respectively), compared with values determined for femoral arteries (32.0% and 2.1%, respectively). Between-dog CV for brachial artery FMD was 34.0%, compared with 89.6% for femoral arteries, and within-dog CV was 32.5% for brachial arteries versus 51.6% for femoral arteries after cuff inflation of 5 minutes' duration.

Conclusions and Clinical Relevance—In healthy Miniature Schnauzers, FMD was greater and more repeatable in brachial arteries than in femoral arteries. Reactive hyperemia was inconsistently induced in femoral arteries following 3- or 5-minute cuff inflation times. Brachial, but not femoral, artery FMD measurement is a potentially useful research technique for measurement of endothelial function in dogs.

Full access
in American Journal of Veterinary Research