Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Emily E. Binversie x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE To determine whether walking at specific ranges of absolute and relative (V*) velocity would aid efficient capture of gait trial data with low ground reaction force (GRF) variance in a heterogeneous sample of dogs.

ANIMALS 17 clinically normal dogs of various breeds, ages, and sexes.

PROCEDURES Each dog was walked across a force platform at its preferred velocity, with controlled acceleration within 0.5 m/s2. Ranges in V* were created for height at the highest point of the shoulders (withers; WHV*). Variance effects from 8 walking absolute velocity ranges and associated WHV* ranges were examined by means of repeated-measures ANCOVA.

RESULTS The individual dog effect provided the greatest contribution to variance. Narrow velocity ranges typically resulted in capture of a smaller percentage of valid trials and were not consistently associated with lower variance. The WHV* range of 0.33 to 0.46 allowed capture of valid trials efficiently, with no significant effects on peak vertical force and vertical impulse.

CONCLUSIONS AND CLINICAL RELEVANCE Dogs with severe lameness may be unable to trot or may have a decline in mobility with gait trial repetition. Gait analysis involving evaluation of individual dogs at their preferred absolute velocity, such that dogs are evaluated at a similar V*, may facilitate efficient capture of valid trials without significant effects on GRF. Use of individual velocity ranges derived from a WHV* range of 0.33 to 0.46 can account for heterogeneity and appears suitable for use in clinical trials involving dogs at a walking gait.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To determine the presentation, diagnosis, progression, and family risk of fibrotic myopathy, a disease with marked breed predisposition in the German Shepherd Dog (GSD).

ANIMALS

41 dogs prospectively recruited to the University of Wisconsin-Madison Comparative Genetics and Orthopedic Laboratory between November 2019 to August 2022.

METHODS

Medical records of dogs diagnosed with fibrotic myopathy were reviewed upon referral. The following data were recorded: sex, age, weight, regio interscapularis (withers) height, date of neutering, coat color and length, and age at fibrotic myopathy diagnosis. A pedigree was also obtained.

RESULTS

In the study population, breeds included 37 GSDs, a Belgian Malinois, a Belgian Malinois cross, and 2 dogs with a GSD phenotype and no pedigree. Mean age at fibrotic myopathy diagnosis was 5.9 ± 2.0 years, and duration of lameness before diagnosis was 5.6 months and ranged from 0.75 to 18 months. Males were overrepresented at 61% of the study population. Inherited familial risk for fibrotic myopathy in the GSD was supported by pedigree analysis.

CLINICAL RELEVANCE

This was the largest case series of fibrotic myopathy to date, providing a more comprehensive look at presentation and progression of the disease. The longer duration of lameness in bilaterally affected dogs likely represents disease progression rather than a more severe phenotype. Family history data support a genetic contribution to fibrotic myopathy, suggesting that further genetic investigation is warranted.

Restricted access
in Journal of the American Veterinary Medical Association