Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Elysia C. Schaefer x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine whether the effects of a high–molecular-weight sodium hyaluronate alone or in combination with triamcinolone acetonide can mitigate chondrocyte glyocosaminoglycan (GAG) catabolism caused by interleukin (IL)-1 administration.

Sample Population—Chondrocytes collected from metacarpophalangeal joints of 10 horses euthanized for reasons unrelated to joint disease.

Procedures—Chondrocyte pellets were treated with medium (negative control), medium containing IL-1 only (positive control), or medium containing IL-1 with hyaluronic acid only (0.5 or 2.0 mg/mL), triamcinolone acetonide only (0.06 or 0.6 mg/mL), or hyaluronic acid (0.5 or 2.0 mg/mL) and triamcinolone acetonide (0.06 or 0.6 mg/mL) in combination. Chondrocyte pellets were assayed for newly synthesized GAG, total GAG content, total DNA content, and mRNA for collagen type II, aggrecan, and cyclooxygenase (COX)-2.

Results—High-concentration hyaluronic acid increased GAG synthesis, whereas high-concentration triamcinolone acetonide decreased loss of GAG into the medium. High concentrations of hyaluronic acid and triamcinolone acetonide increased total GAG content. There was no change in DNA content with either treatment. Triamcinolone acetonide reduced COX-2 mRNA as well as aggrecan and collagen type II expression. Treatment with hyaluronic acid had no effect on mRNA for COX-2, aggrecan, or collagen type II.

Conclusions and Clinical Relevance—Results indicated that high concentrations of hyaluronic acid or triamcinolone acetonide alone or in combination mitigated effects of IL-1 administration on GAG catabolism of equine chondrocytes.

Full access
in American Journal of Veterinary Research